
cloud-init
Release 24.1.3

unknown

Apr 26, 2024

CONTENTS

1 Having trouble? We would like to help! 3

2 Project and community 5
2.1 Tutorials . 5
2.2 How-to guides . 18
2.3 Explanation . 33
2.4 Reference . 73
2.5 How to contribute to cloud-init . 297
2.6 Contribute to the code . 308
2.7 Contribute to our docs . 322
2.8 The cloud-init summit . 326

Python Module Index 343

Index 345

i

ii

cloud-init, Release 24.1.3

Cloud-init is the industry standard multi-distribution method for cross-platform cloud instance initialisation. It is
supported across all major public cloud providers, provisioning systems for private cloud infrastructure, and bare-metal
installations.

During boot, cloud-init identifies the cloud it is running on and initialises the system accordingly. Cloud instances
will automatically be provisioned during first boot with networking, storage, SSH keys, packages and various other
system aspects already configured.

Cloud-init provides the necessary glue between launching a cloud instance and connecting to it so that it works as
expected.

For cloud users, cloud-init provides no-install first-boot configuration management of a cloud instance. For cloud
providers, it provides instance setup that can be integrated with your cloud.

If you would like to read more about what cloud-init is, what it does and how it works, check out our high-level
introduction to the tool.

Tutorials Get started - a hands-on introduction to cloud-init for new users

How-to guides Step-by-step guides covering key operations and common tasks

Reference Technical information - specifications, APIs, architecture

Explanation Discussion and clarification of key topics

CONTENTS 1

cloud-init, Release 24.1.3

2 CONTENTS

CHAPTER

ONE

HAVING TROUBLE? WE WOULD LIKE TO HELP!

• Check out our tutorials if you’re new to cloud-init

• Try the FAQ for answers to some common questions

• You can also search the cloud-init mailing list archive

• Find a bug? Report bugs on GitHub Issues

3

https://lists.launchpad.net/cloud-init/
https://github.com/canonical/cloud-init/issues

cloud-init, Release 24.1.3

4 Chapter 1. Having trouble? We would like to help!

CHAPTER

TWO

PROJECT AND COMMUNITY

Cloud-init is an open source project that warmly welcomes community projects, contributions, suggestions, fixes
and constructive feedback.

• Read our Code of Conduct

• Ask questions in the #cloud-init IRC channel on Libera

• Follow announcements or ask a question on the cloud-init Discourse forum

• Join the cloud-init mailing list

• Contribute on GitHub

• Release schedule

2.1 Tutorials

This section contains step-by-step tutorials to help you get started with cloud-init. We hope our tutorials make as
few assumptions as possible and are accessible to anyone with an interest in cloud-init. They should be a great place
to start learning about cloud-init, how it works, and what it’s capable of.

2.1.1 Core tutorial

This tutorial, which we recommend if you are completely new to cloud-init, uses the QEMU emulator to introduce
you to all of the key concepts, tools, processes and operations that you will need to get started.

Core tutorial with QEMU

QEMU tutorial debugging

You may wish to test out the commands in this tutorial as a script to check for copy-paste mistakes.

If you successfully launched the virtual machine, but couldn’t log in, there are a few places to check to debug your
setup.

To debug, answer the following questions:

5

https://ubuntu.com/community/code-of-conduct
https://kiwiirc.com/nextclient/irc.libera.chat/cloud-init
https://discourse.ubuntu.com/c/server/cloud-init/
https://launchpad.net/~cloud-init
https://discourse.ubuntu.com/t/cloud-init-release-schedule/32244

cloud-init, Release 24.1.3

Did cloud-init discover the IMDS webserver?

The webserver should print a message in the terminal for each request it receives. If it didn’t print out any messages
when the virtual machine booted, then cloud-init was unable to obtain the config. Make sure that the webserver can
be locally accessed using curl or wget.

$ curl 0.0.0.0:8000/user-data
$ curl 0.0.0.0:8000/meta-data
$ curl 0.0.0.0:8000/vendor-data

Did the IMDS webserver serve the expected files?

If the webserver prints out 404 errors when launching QEMU, then check that you started the server in the temp
directory.

Were the configurations inside the file correct?

When launching QEMU, if the webserver shows that it succeeded in serving user-data, meta-data and
vendor-data, but you cannot log in, then you may have provided incorrect cloud-config files. If you can mount a
copy of the virtual machine’s filesystem locally to inspect the logs, it should be possible to get clues about what went
wrong.

In this tutorial, we will launch an Ubuntu cloud image in a virtual machine that uses cloud-init to pre-configure the
system during boot.

The goal of this tutorial is to provide a minimal demonstration of cloud-init, which you can then use as a development
environment to test your cloud-init configurations locally before launching to the cloud.

Why QEMU?

QEMU is a cross-platform emulator capable of running performant virtual machines. QEMU is used at the core of a
broad range of production operating system deployments and open source software projects (including libvirt, LXD,
and vagrant) and is capable of running Windows, Linux, and Unix guest operating systems. While QEMU is flexibile
and feature-rich, we are using it because of the broad support it has due to its broad adoption and ability to run on
*nix-derived operating systems.

How to use this tutorial

In this tutorial, the commands in each code block can be copied and pasted directly into the terminal. Omit the prompt
($) before each command, or use the “copy code” button on the right-hand side of the block, which will copy the
command for you without the prompt.

Each code block is preceded by a description of what the command does, and followed by an example of the type of
output you should expect to see.

6 Chapter 2. Project and community

https://www.qemu.org

cloud-init, Release 24.1.3

Install QEMU

$ sudo apt install qemu-system-x86

If you are not using Ubuntu, you can visit QEMU’s install instructions for additional information.

Create a temporary directory

This directory will store our cloud image and configuration files for user data, metadata, and vendor data.

You should run all commands from this temporary directory. If you run the commands from anywhere else, your virtual
machine will not be configured.

Let’s create a temporary directory and make it our current working directory with cd:

$ mkdir temp
$ cd temp

Download a cloud image

Cloud images typically come with cloud-init pre-installed and configured to run on first boot. You will not need to
worry about installing cloud-init for now, since we are not manually creating our own image in this tutorial.

In our case, we want to select the latest Ubuntu LTS. Let’s download the server image using wget:

$ wget https://cloud-images.ubuntu.com/jammy/current/jammy-server-cloudimg-amd64.img

Define our user data

Now we need to create our user-data file. This user data cloud-config sets the password of the default user, and sets
that password to never expire. For more details you can refer to the Set Passwords module page.

Run the following command, which creates a file named user-data containing our configuration data.

$ cat << EOF > user-data
#cloud-config
password: password
chpasswd:
expire: False

EOF

2.1. Tutorials 7

https://www.qemu.org/download/#linux
https://wiki.ubuntu.com/Releases

cloud-init, Release 24.1.3

What is user data?

Before moving forward, let’s inspect our user-data file.

$ cat user-data

You should see the following contents:

#cloud-config
password: password
chpasswd:
expire: False

The first line starts with #cloud-config, which tells cloud-initwhat type of user data is in the config. Cloud-config
is a YAML-based configuration type that tells cloud-init how to configure the virtual machine instance. Multiple
different format types are supported by cloud-init. For more information, see the documentation describing different
formats.

The second line, password: password, as per the Users and Groups module docs, sets the default user’s password
to password.

The third and fourth lines direct cloud-init to not require a password reset on first login.

Define our metadata

Now let’s run the following command, which creates a file named meta-data containing configuration data.

$ cat << EOF > meta-data
instance-id: someid/somehostname

EOF

Define our vendor data

Now we will create the empty file vendor-data in our temporary directory. This will speed up the retry wait time.

$ touch vendor-data

Start an ad hoc IMDS webserver

Open up a second terminal window, change to your temporary directory and then start the built-in Python webserver:

$ cd temp
$ python3 -m http.server --directory .

8 Chapter 2. Project and community

cloud-init, Release 24.1.3

What is an IMDS?

Instance Metadata Service (IMDS) is a service provided by most cloud providers as a means of providing information
to virtual machine instances. This service is used by cloud providers to expose information to a virtual machine.
This service is used for many different things, and is the primary mechanism for some clouds to expose cloud-init
configuration data to the instance.

How does cloud-init use the IMDS?

The IMDS uses a private http webserver to provide metadata to each operating system instance. During early boot,
cloud-init sets up network access and queries this webserver to gather configuration data. This allows cloud-init
to configure your operating system while it boots.

In this tutorial we are emulating this workflow using QEMU and a simple Python webserver. This workflow is suitable
for developing and testing cloud-init configurations prior to cloud deployments.

Launch a virtual machine with our user data

Switch back to your original terminal, and run the following command so we can launch our virtual machine. By
default, QEMU will print the kernel logs and systemd logs to the terminal while the operating system boots. This may
take a few moments to complete.

$ qemu-system-x86_64 \
-net nic \
-net user \
-machine accel=kvm:tcg \
-cpu host \
-m 512 \
-nographic \
-hda jammy-server-cloudimg-amd64.img \
-smbios type=1,serial=ds='nocloud;s=http://10.0.2.2:8000/'

Note: If the output stopped scrolling but you don’t see a prompt yet, press Enter to get to the login prompt.

How is QEMU configured for cloud-init?

When launching QEMU, our machine configuration is specified on the command line. Many things may be configured:
memory size, graphical output, networking information, hard drives and more.

Let us examine the final two lines of our previous command. The first of them, -hda
jammy-server-cloudimg-amd64.img, tells QEMU to use the cloud image as a virtual hard drive. This will
cause the virtual machine to boot Ubuntu, which already has cloud-init installed.

The second line tells cloud-init where it can find user data, using the NoCloud datasource. During boot,
cloud-init checks the SMBIOS serial number for ds=nocloud. If found, cloud-init will use the specified URL to
source its user data config files.

In this case, we use the default gateway of the virtual machine (10.0.2.2) and default port number of the Python
webserver (8000), so that cloud-init will, inside the virtual machine, query the server running on host.

2.1. Tutorials 9

cloud-init, Release 24.1.3

Verify that cloud-init ran successfully

After launching the virtual machine, we should be able to connect to our instance using the default distro username.

In this case the default username is ubuntu and the password we configured is password.

If you can log in using the configured password, it worked!

If you couldn’t log in, see this page for debug information.

Check cloud-init status

Run the following command, which will allow us to check if cloud-init has finished running:

$ cloud-init status --wait

If you see status: done in the output, it succeeded!

If you see a failed status, you’ll want to check /var/log/cloud-init.log for warning/error messages.

Tear down

In our main terminal, let’s exit the QEMU shell using ctrl-a x (that’s ctrl and a simultaneously, followed by x).

In the second terminal, where the Python webserver is running, we can stop the server using (ctrl-c).

What’s next?

In this tutorial, we configured the default user’s password and ran cloud-init inside our QEMU virtual machine.

The full list of modules available can be found in our modules documentation. The documentation for each module
contains examples of how to use it.

You can also head over to the examples page for examples of more common use cases.

2.1.2 Quick-start tutorial

This tutorial is recommended if you have some familiarity with cloud-init or the concepts around it, and are looking
to get started as quickly as possible. Here, you will use an LXD container to deploy a cloud-init user data script.

Quick-start tutorial with LXD

In this tutorial, we will create our first cloud-init user data script and deploy it into an LXD container.

10 Chapter 2. Project and community

https://ubuntu.com/lxd

cloud-init, Release 24.1.3

Why LXD?

We’ll be using LXD for this tutorial because it provides first class support for cloud-init user data, as well as systemd
support. Because it is container based, it allows us to quickly test and iterate upon our user data definition.

How to use this tutorial

In this tutorial, the commands in each code block can be copied and pasted directly into the terminal. Omit the prompt
($) before each command, or use the “copy code” button on the right-hand side of the block, which will copy the
command for you without the prompt.

Each code block is preceded by a description of what the command does, and followed by an example of the type of
output you should expect to see.

Install and initialise LXD

If you already have LXD set up, you can skip this section. Otherwise, let’s install LXD:

$ sudo snap install lxd

If you don’t have snap, you can install LXD using one of the other installation options.

Now we need to initialise LXD. The minimal configuration will be enough for the purposes of this tutorial. If you need
to, you can always change the configuration at a later time.

$ lxd init --minimal

Define our user data

Now that LXD is set up, we can define our user data. Create the following file on your local filesystem at /tmp/
my-user-data:

#cloud-config
runcmd:
- echo 'Hello, World!' > /var/tmp/hello-world.txt

Here, we are defining our cloud-init user data in the #cloud-config format, using the runcmd module to define a
command to run. When applied, it will write Hello, World! to /var/tmp/hello-world.txt (as we shall see
later!).

Launch a LXD container with our user data

Now that we have LXD set up and our user data defined, we can launch an instance with our user data:

$ lxc launch ubuntu:focal my-test --config=user.user-data="$(cat /tmp/my-user-data)"

2.1. Tutorials 11

https://documentation.ubuntu.com/lxd/en/latest/installing/#other-installation-options

cloud-init, Release 24.1.3

Verify that cloud-init ran successfully

After launching the container, we should be able to connect to our instance using:

$ lxc shell my-test

You should now be in a shell inside the LXD instance.

Before validating the user data, let’s wait for cloud-init to complete successfully:

$ cloud-init status --wait

Which provides the following output:

status: done

Verify our user data

Now we know that cloud-init has been successfully run, we can verify that it received the expected user data we
provided earlier:

$ cloud-init query userdata

Which should print the following to the terminal window:

#cloud-config
runcmd:
- echo 'Hello, World!' > /var/tmp/hello-world.txt

We can also assert the user data we provided is a valid cloud-config:

$ cloud-init schema --system --annotate

Which should print the following:

Valid schema user-data

Finally, let us verify that our user data was applied successfully:

$ cat /var/tmp/hello-world.txt

Which should then print:

Hello, World!

We can see that cloud-init has received and consumed our user data successfully!

12 Chapter 2. Project and community

cloud-init, Release 24.1.3

Tear down

Exit the container shell (by typing exit or pressing ctrl-d). Once we have exited the container, we can stop the
container using:

$ lxc stop my-test

We can then remove the container completely using:

$ lxc rm my-test

What’s next?

In this tutorial, we used the runcmd module to execute a shell command. The full list of modules available can be found
in our modules documentation. Each module contains examples of how to use it.

You can also head over to the examples page for examples of more common use cases.

2.1.3 WSL tutorial

This tutorial is for learning to use cloud-init within a WSL environment. You will use a cloud-init user data script
to customize a WSL instance.

WSL Tutorial

In this tutorial, we will customize a Windows Subsystem for Linux (WSL) instance using cloud-init on Ubuntu.

How to use this tutorial

In this tutorial, the commands in each code block can be copied and pasted directly into a PowerShell Window . Omit
the prompt before each command, or use the “copy code” button on the right-hand side of the block, which will copy
the command for you without the prompt.

Prerequisites

This tutorial assumes you are running within a Windows 11 or Windows Server 2022 environment. If wsl is already
installed, you must be running version 2. You can check your version of wsl by running the following command:

PS> wsl --version

Example output:

WSL version: 2.1.5.0
Kernel version: 5.15.146.1
WSLg version: 1.0.60
MSRDC version: 1.2.5105
Direct3D version: 1.611.1-81528511
DXCore version: 10.0.25131.1002-220531-1700.rs-onecore-base2-hyp
Windows version: 10.0.20348.2402

2.1. Tutorials 13

cloud-init, Release 24.1.3

If running this tutorial within a virtualized environment (including in the cloud), ensure that nested virtualization is
enabled.

Install WSL

Note: If you have already installed WSL, you can skip this section.

PS> wsl --install

Example output:

Installing: Virtual Machine Platform
Virtual Machine Platform has been installed.
Installing: Windows Subsystem for Linux
Windows Subsystem for Linux has been installed.
Installing: Ubuntu
Ubuntu has been installed.
The requested operation is successful. Changes will not be effective until the system is␣
→˓rebooted.

Reboot the system when prompted.

Obtain the Ubuntu WSL image

Ubuntu 24.04, which is still in development, is the first Ubuntu version to support cloud-init in WSL, so that is the
image that we’ll use.

We have two options to obtain the Ubuntu 24.04 WSL image: the Microsoft Store and the Ubuntu image server.

Option #1: The Microsoft Store

If you have access to the Microsoft Store, you can download the Ubuntu 24.04 WSL image from within the app.

Click on the “Get” button to download the image.

Once the image has downloaded, do NOT click open as that will start the instance before we have defined our cloud-init
user data used to customize the instance.

Once the image has downloaded, you can verify that it is available by running the following command:

PS> wsl --list

Example output:

Windows Subsystem for Linux Distributions:
Ubuntu (Default)
Ubuntu-Preview

It should show Ubuntu-Preview in the list of available WSL instances.

14 Chapter 2. Project and community

https://techcommunity.microsoft.com/t5/itops-talk-blog/how-to-setup-nested-virtualization-for-azure-vm-vhd/ba-p/1115338
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/nested-virtualization
https://apps.microsoft.com/detail/9p7bdvkvnxz6

cloud-init, Release 24.1.3

Option #2: The Ubuntu image server

If the Microsoft Store is not an option, we can instead download the Ubuntu 24.04 WSL image from the Ubuntu image
server.

Create a directory under the user’s home directory to store the WSL image and install data.

PS> mkdir ~\wsl-images

Download the Ubuntu 24.04 WSL image.

PS> Invoke-WebRequest -Uri https://cloud-images.ubuntu.com/wsl/noble/current/ubuntu-
→˓noble-wsl-amd64-wsl.rootfs.tar.gz -OutFile wsl-images\ubuntu-noble-wsl-amd64-wsl.
→˓rootfs.tar.gz

Import the image into WSL storing it in the wsl-images directory.

PS> wsl --import Ubuntu-Preview wsl-images .\wsl-images\ubuntu-noble-wsl-amd64-wsl.
→˓rootfs.tar.gz

Example output:

Import in progress, this may take a few minutes.
The operation completed successfully.

Create our user data

User data is the primary way for a user to customize a cloud-init instance. Open Notepad and paste the following:

#cloud-config
write_files:
- content: |

Hello from cloud-init
path: /var/tmp/hello-world.txt
permissions: '0777'

Save the file to %USERPROFILE%\.cloud-init\Ubuntu-Preview.user-data.

For example, if your username is me, the path would be C:\Users\me\.cloud-init\Ubuntu-Preview.user-data.
Ensure that the file is saved with the .user-data extension and not as a .txt file.

Note: We are creating user data that is tied to the instance we just created, but by changing the filename, we can create
user data that applies to multiple or all WSL instances. See WSL Datasource reference page for more information.

2.1. Tutorials 15

https://cloud-images.ubuntu.com/wsl/
https://cloud-images.ubuntu.com/wsl/

cloud-init, Release 24.1.3

What is user data?

Before moving forward, let’s inspect our user-data file.

We created the following contents:

#cloud-config
write_files:
- content: |

Hello from cloud-init
path: /var/tmp/hello-world.txt
permissions: '0770'

The first line starts with #cloud-config, which tells cloud-init what type of user data is in the config. Cloud-config is
a YAML-based configuration type that tells cloud-init how to configure the instance being created. Multiple different
format types are supported by cloud-init. For more information, see the documentation describing different formats.

The remaining lines, as per the Write Files module docs, creates a file /var/tmp/hello-world.txt with the content
Hello from cloud-init and permissions allowing anybody on the system to read or write the file.

Start the Ubuntu WSL instance

PS> wsl --distribution Ubuntu-Preview

The Ubuntu WSL instance will start, and you may be prompted for a username and password.

Installing, this may take a few minutes...
Please create a default UNIX user account. The username does not need to match your␣
→˓Windows username.
For more information visit: https://aka.ms/wslusers
Enter new UNIX username:
New password:
Retype new password:

Once the credentials have been entered, you should see a welcome screen similar to the following:

Welcome to Ubuntu Noble Numbat (development branch) (GNU/Linux 5.15.146.1-microsoft-
→˓standard-WSL2 x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/pro

System information as of Mon Apr 22 21:06:49 UTC 2024

System load: 0.08 Processes: 51
Usage of /: 0.1% of 1006.85GB Users logged in: 0
Memory usage: 4% IPv4 address for eth0: 172.29.240.255
Swap usage: 0%

This message is shown once a day. To disable it please create the
/root/.hushlogin file.
root@machine:/mnt/c/Users/me#

16 Chapter 2. Project and community

cloud-init, Release 24.1.3

You should now be in a shell inside the WSL instance.

Verify that cloud-init ran successfully

Before validating the user data, let’s wait for cloud-init to complete successfully:

$ cloud-init status --wait

Which provides the following output:

status: done

Now we can now see that cloud-init has detected that we running in WSL:

$ cloud-id

Which provides the following output:

wsl

Verify our user data

Now we know that cloud-init has been successfully run, we can verify that it received the expected user data we
provided earlier:

$ cloud-init query userdata

Which should print the following to the terminal window:

#cloud-config
write_files:
- content: |

Hello from cloud-init
path: /var/tmp/hello-world.txt
permissions: '0770'

We can also assert the user data we provided is a valid cloud-config:

$ cloud-init schema --system --annotate

Which should print the following:

Valid schema user-data

Finally, let us verify that our user data was applied successfully:

$ cat /var/tmp/hello-world.txt

Which should then print:

Hello from cloud-init

We can see that cloud-init has received and consumed our user data successfully!

2.1. Tutorials 17

cloud-init, Release 24.1.3

What’s next?

In this tutorial, we used the Write Files module to write a file to our WSL instance. The full list of modules available
can be found in our modules documentation. Each module contains examples of how to use it.

You can also head over to the examples page for examples of more common use cases.

Cloud-init’s WSL reference documentation can be found on the WSL Datasource reference page.

2.2 How-to guides

If you have a specific goal in mind and are already familiar with the basics of cloud-init, our how-to guides cover
some of the more common operations and tasks that you may need to complete.

They will help you to achieve a particular end result, but may require you to understand and adapt the steps to fit your
specific requirements.

2.2.1 How do I. . . ?

How to run cloud-init locally

It’s very likely that you will want to test cloud-init locally before deploying it to the cloud. Fortunately, there are
several different virtual machine (VM) and container tools that are ideal for this sort of local testing.

• boot cloud-init with QEMU

• boot cloud-init with LXD

• boot cloud-init with Libvirt

• boot cloud-init with Multipass

QEMU

QEMU is a general purpose computer hardware emulator that is capable of running virtual machines with hardware
acceleration as well as emulating the instruction sets of different architectures than the host that you are running on.

The NoCloud datasource allows users to provide their own user data, metadata, or network configuration directly to an
instance without running a network service. This is helpful for launching local cloud images with QEMU.

Create your configuration

We will leave the network-config and meta-data files empty, but populate user-data with a cloud-init configu-
ration. You may edit the network-config and meta-data files if you have a config to provide.

$ touch network-config
$ touch meta-data
$ cat >user-data <<EOF
#cloud-config
password: password
chpasswd:

(continues on next page)

18 Chapter 2. Project and community

https://www.qemu.org/

cloud-init, Release 24.1.3

(continued from previous page)

expire: False
ssh_pwauth: True
EOF

Create an ISO disk

This disk is used to pass configuration to cloud-init. Create it with the genisoimage command:

genisoimage \
-output seed.img \
-volid cidata -rational-rock -joliet \
user-data meta-data network-config

Download a cloud image

Download an Ubuntu image to run:

wget https://cloud-images.ubuntu.com/jammy/current/jammy-server-cloudimg-amd64.img

Boot the image with the ISO attached

Boot the cloud image with our configuration, seed.img, to QEMU:

$ qemu-system-x86_64 -m 1024 -net nic -net user \
-hda jammy-server-cloudimg-amd64.img \
-hdb seed.img

The now-booted image will allow for login using the password provided above.

For additional configuration, users can provide much more detailed configuration in the empty network-config and
meta-data files.

Note: See the Networking config Version 2 page for details on the format and config of network configuration. To
learn more about the possible values for metadata, check out the NoCloud page.

LXD

LXD offers a streamlined user experience for using Linux system containers. With LXD, the following command
initialises a container with user data:

$ lxc init ubuntu-daily:jammy test-container
$ lxc config set test-container user.user-data - < userdata.yaml
$ lxc start test-container

To avoid the extra commands this can also be done at launch:

2.2. How-to guides 19

https://ubuntu.com/lxd

cloud-init, Release 24.1.3

$ lxc launch ubuntu-daily:jammy test-container --config=user.user-data="$(cat userdata.
→˓yaml)"

Finally, a profile can be set up with the specific data if you need to launch this multiple times:

$ lxc profile create dev-user-data
$ lxc profile set dev-user-data user.user-data - < cloud-init-config.yaml
$ lxc launch ubuntu-daily:jammy test-container -p default -p dev-user-data

LXD configuration types

The above examples all show how to pass user data. To pass other types of configuration data use the configuration
options specified below:

Data Configuration option
user data cloud-init.user-data
vendor data cloud-init.vendor-data
network config cloud-init.network-config

See the LXD Instance Configuration docs for more info about configuration values or the LXD Custom Network Con-
figuration document for more about custom network config.

Libvirt

Libvirt is a tool for managing virtual machines and containers.

Create your configuration

We will leave the network-config and meta-data files empty, but populate user-data with a cloud-init configuration.
You may edit the network-config and meta-data files if you have a config to provide.

$ touch network-config
$ touch meta-data
$ cat >user-data <<EOF
#cloud-config
password: password
chpasswd:
expire: False

ssh_pwauth: True
EOF

20 Chapter 2. Project and community

https://documentation.ubuntu.com/lxd/en/latest/instances/
https://documentation.ubuntu.com/lxd/en/latest/cloud-init/
https://documentation.ubuntu.com/lxd/en/latest/cloud-init/
https://libvirt.org/

cloud-init, Release 24.1.3

Download a cloud image

Download an Ubuntu image to run:

wget https://cloud-images.ubuntu.com/jammy/current/jammy-server-cloudimg-amd64.img

Create an instance

virt-install --name cloud-init-001 --memory 4000 --noreboot \
--os-variant detect=on,name=ubuntujammy \
--disk=size=10,backing_store="$(pwd)/jammy-server-cloudimg-amd64.img" \
--cloud-init user-data="$(pwd)/user-data,meta-data=$(pwd)/meta-data,network-config=

→˓$(pwd)/network-config"

Multipass

Multipass is a cross-platform tool for launching Ubuntu VMs across Linux, Windows, and macOS.

When a user launches a Multipass VM, user data can be passed by adding the --cloud-init flag and the appropriate
YAML file containing the user data:

$ multipass launch bionic --name test-vm --cloud-init userdata.yaml

Multipass will validate the user-data cloud-config file before attempting to start the VM. This breaks all cloud-init
configuration formats except user data cloud-config.

How to re-run cloud-init

How to fully re-run cloud-init

Most cloud-init configuration is only applied to the system once. This means that simply rebooting the system will
only re-run a subset of cloud-init. Cloud-init provides two different options for re-running cloud-init for debugging
purposes.

Warning: Making cloud-init run again may be destructive and must never be done on a production system.
Artefacts such as ssh keys or passwords may be overwritten.

Remove the logs and cache, then reboot

This method will reboot the system as if cloud-init never ran. This command does not remove all cloud-init artefacts
from previous runs of cloud-init, but it will clean enough artefacts to allow cloud-init to think that it hasn’t run yet. It
will then re-run after a reboot.

cloud-init clean --logs --reboot

2.2. How-to guides 21

https://multipass.run/

cloud-init, Release 24.1.3

Run a single cloud-init module

If you are using user data cloud-config format, you might wish to re-run just a single configuration module. Cloud-init
provides the ability to run a single module in isolation and separately from boot. This command is:

$ sudo cloud-init single --name cc_ssh --frequency always

Example output:

...
Generating public/private ed25519 key pair
...

This subcommand is not called by the init system. It can be called manually to load the configured datasource and run
a single cloud-config module once, using the cached user data and metadata after the instance has booted.

Note: Each cloud-config module has a module FREQUENCY configured: PER_INSTANCE, PER_BOOT, PER_ONCE
or PER_ALWAYS. When a module is run by cloud-init, it stores a semaphore file in /var/lib/cloud/instance/
sem/config_<module_name>.<frequency> which marks when the module last successfully ran. Presence of this
semaphore file prevents a module from running again if it has already been run.

Inspect cloud-init.log for output of what operations were performed as a result.

How to partially re-run cloud-init

If the behavior you are testing runs on every boot, there are a couple of ways to test this behavior.

Manually run cloud-init stages

Note that during normal boot of cloud-init, the init system runs these stages at specific points during boot. This means
that running the code manually after booting the system may cause the code to interact with the system in a different
way than it does while it boots.

cloud-init init --local
cloud-init init
cloud-init modules --mode=config
cloud-init modules --mode=final

Reboot the instance

Rebooting the instance will take a little bit longer, however it will make cloud-init stages run at the correct times during
boot, so it will behave more correctly.

reboot -h now

22 Chapter 2. Project and community

cloud-init, Release 24.1.3

How to change a module’s run frequency

You may want to change the default frequency at which a module runs, for example, to make the module run on every
boot.

To override the default frequency, you will need to modify the module list in /etc/cloud/cloud.cfg:

1. Change the module from a string (default) to a list.

2. Set the first list item to the module name and the second item to the frequency.

Example

The following example demonstrates how to log boot times to a file every boot.

Update /etc/cloud/cloud.cfg:

cloud_final_modules:
list shortened for brevity
- [phone_home, always]
- final_message
- power_state_change

Then your user data could then be:

#cloud-config
phone_home:

url: http://example.com/$INSTANCE_ID/
post: all

How to validate user data cloud config

The two most common issues with cloud config user data are:

1. Incorrectly formatted YAML

2. The first line does not start with #cloud-config

Static user data validation

Cloud-init is capable of validating cloud config user data directly from its datasource (i.e. on a running cloud instance).
To do this, you can run:

sudo cloud-init schema --system --annotate

Or, to test YAML in a specific file:

cloud-init schema -c test.yml --annotate

Example output:

$ cloud-init schema --config-file=test.yaml --annotate
#cloud-config
users:

(continues on next page)

2.2. How-to guides 23

cloud-init, Release 24.1.3

(continued from previous page)

- name: holmanb # E1,E2,E3
gecos: Brett Holman
primary_group: holmanb
lock_passwd: false
invalid_key: true

Errors: -------------
E1: Additional properties are not allowed ('invalid_key' was unexpected)
E2: {'name': 'holmanb', 'gecos': 'Brett Holman', 'primary_group': 'holmanb', 'lock_
→˓passwd': False, 'invalid_key': True} is not of type 'array'
E3: {'name': 'holmanb', 'gecos': 'Brett Holman', 'primary_group': 'holmanb', 'lock_
→˓passwd': False, 'invalid_key': True} is not of type 'string'

Debugging

If your user-data cloud config is correct according to the cloud-init schema command, but you are still having issues,
then please refer to our debugging guide.

To report any bugs you find, refer to this guide.

How to debug cloud-init

There are several cloud-init failure modes that one may need to debug. Debugging is specific to the scenario, but the
starting points are often similar:

• I cannot log in

• Cloud-init did not run

• Cloud-init did the unexpected

• Cloud-init never finished running

I can’t log in to my instance

One of the more challenging scenarios to debug is when you don’t have shell access to your instance. You have a few
options:

1. Acquire log messages from the serial console and check for any errors.

2. To access instances without SSH available, create a user with password access (using the user-data) and log in
via the cloud serial port console. This only works if cc_users_groups successfully ran.

3. Try running the same user-data locally, such as in one of the tutorials. Use LXD or QEMU locally to get a shell
or logs then debug with these steps.

4. Try copying the image to your local system, mount the filesystem locally and inspect the image logs for clues.

24 Chapter 2. Project and community

cloud-init, Release 24.1.3

Cloud-init did not run

1. Check the output of cloud-init status --long

• what is the value of the 'extended_status' key?

• what is the value of the 'boot_status_code' key?

See our reported status explanation for more information on the status.

2. Check the contents of /run/cloud-init/ds-identify.log

This log file is used when the platform that cloud-init is running on is detected. This stage enables or disables
cloud-init.

3. Check the status of the services

systemctl status cloud-init-local.service cloud-init.service\
cloud-config.service cloud-final.service

Cloud-init may have started to run, but not completed. This shows how many, and which, cloud-init stages
completed.

Cloud-init ran, but didn’t do what I want it to

1. If you are using cloud-init’s user data cloud config, make sure to validate your user data cloud config

2. Check for errors in cloud-init status --long

• what is the value of the 'errors' key?

• what is the value of the 'recoverable_errors' key?

See our guide on exported errors for more information on these exported errors.

3. For more context on errors, check the logs files:

• /var/log/cloud-init.log

• /var/log/cloud-init-output.log

Identify errors in the logs and the lines preceding these errors.

Ask yourself:

• According to the log files, what went wrong?

• How does the cloud-init error relate to the configuration provided to this instance?

• What does the documentation say about the parts of the configuration that relate to this error? Did a
configuration module fail?

• What failure state is cloud-init in?

2.2. How-to guides 25

cloud-init, Release 24.1.3

Cloud-init never finished running

There are many reasons why cloud-init may fail to complete. Some reasons are internal to cloud-init, but in other cases,
cloud-init failure to complete may be a symptom of failure in other components of the system, or the result of a user
configuration.

External reasons

• Failed dependent services in the boot.

• Bugs in the kernel or drivers.

• Bugs in external userspace tools that are called by cloud-init.

Internal reasons

• A command in bootcmd or runcmd that never completes (e.g., running cloud-init status --wait will
deadlock).

• Configurations that disable timeouts or set extremely high timeout values.

To start debugging

1. Check dmesg for errors:

dmesg -T | grep -i -e warning -e error -e fatal -e exception

2. Investigate other systemd services that failed

systemctl --failed

3. Check the output of cloud-init status --long

• what is the value of the 'extended_status' key?

• what is the value of the 'boot_status_code' key?

See our guide on exported errors for more information on these exported errors.

4. Identify which cloud-init boot stage is currently running:

systemctl status cloud-init-local.service cloud-init.service\
cloud-config.service cloud-final.service

Cloud-init may have started to run, but not completed. This shows how many, and which, cloud-init stages
completed.

5. Use the PID of the running service to find all running subprocesses. Any running process that was spawned by
cloud-init may be blocking cloud-init from continuing.

pstree <PID>

Ask yourself:

• Which process is still running?

26 Chapter 2. Project and community

cloud-init, Release 24.1.3

• Why is this process still running?

• How does this process relate to the configuration that I provided?

6. For more context on errors, check the logs files:

• /var/log/cloud-init.log

• /var/log/cloud-init-output.log

Identify errors in the logs and the lines preceding these errors.

Ask yourself:

• According to the log files, what went wrong?

• How does the cloud-init error relate to the configuration provided to this instance?

• What does the documentation say about the parts of the configuration that relate to this error?

Reported status

When interacting with cloud-init, it may be useful to know whether cloud-init has run, or is currently running. Since
cloud-init consists of several different stages, interacting directly with your init system might yield different reported
results than one might expect, unless one has intimate knowledge of cloud-init’s boot stages.

Cloud-init status

To simplify this, cloud-init provides a tool, cloud-init status to report the current status of cloud-init.

$ cloud-init status
"done"

Cloud-init’s extended status

Cloud-init is also capable of reporting when cloud-init has not been able to complete the tasks described in a user
configuration. If cloud-init has experienced issues while running, the extended status will include the word “degraded”
in its status.

Cloud-init can report its internal state via the status --format json subcommand under the extended_status
key.

$ cloud-init status --format json
{

"boot_status_code": "enabled-by-generator",
"datasource": "lxd",
"detail": "DataSourceLXD",
"errors": [],
"extended_status": "degraded done",
"init": {

"errors": [],
"finished": 1708550839.1837437,
"recoverable_errors": {},
"start": 1708550838.6881146

},
(continues on next page)

2.2. How-to guides 27

cloud-init, Release 24.1.3

(continued from previous page)

"init-local": {
"errors": [],
"finished": 1708550838.0196638,
"recoverable_errors": {},
"start": 1708550837.7719762

},
"last_update": "Wed, 21 Feb 2024 21:27:24 +0000",
"modules-config": {

"errors": [],
"finished": 1708550843.8297973,
"recoverable_errors": {
"WARNING": [

"Removing /etc/apt/sources.list to favor deb822 source format"
]
},
"start": 1708550843.7163966

},
"modules-final": {

"errors": [],
"finished": 1708550844.0884337,
"recoverable_errors": {},
"start": 1708550844.029698

},
"recoverable_errors": {

"WARNING": [
"Removing /etc/apt/sources.list to favor deb822 source format"
]

},
"stage": null,
"status": "done"

}

See the list of all possible reported statuses:

"not started"
"running"
"done"
"error - done"
"error - running"
"degraded done"
"degraded running"
"disabled"

28 Chapter 2. Project and community

cloud-init, Release 24.1.3

Cloud-init enablement status

Separately from the current running status described above, cloud-init can also report how it was disabled or enabled.
This can be viewed by checking the boot_status_code in cloud-init status --long, which may contain any of
the following states:

• 'unknown': ds-identify has not run yet to determine if cloud-init should be run during this boot

• 'disabled-by-marker-file': /etc/cloud/cloud-init.disabled exists which prevents cloud-init from
ever running

• 'disabled-by-generator': ds-identify determined no applicable cloud-init datasources

• 'disabled-by-kernel-cmdline': kernel command line contained cloud-init=disabled

• 'disabled-by-environment-variable': environment variable KERNEL_CMDLINE contained
cloud-init=disabled

• 'enabled-by-kernel-cmdline': kernel command line contained cloud-init=enabled

• 'enabled-by-generator': ds-identify detected possible cloud-init datasources

• 'enabled-by-sysvinit': enabled by default in SysV init environment

See our explanation of failure states for more information.

Reporting bugs

In this guide, we will show you how to:

1) Collect logs to support your bug report.

2) File bugs to the upstream cloud-init project via GitHub Issues.

3) Report issues for distro-specific packages.

Collect logs

To aid in debugging, please collect the necessary logs. To do so, run the collect-logs subcommand to produce a
tarfile that you can easily upload:

$ sudo cloud-init collect-logs

Example output:

Wrote /home/ubuntu/cloud-init.tar.gz

If your version of cloud-init does not have the collect-logs subcommand, then please manually collect the base
log files by running the following:

$ sudo dmesg > dmesg.txt
$ sudo journalctl -o short-precise > journal.txt
$ sudo tar -cvf cloud-init.tar dmesg.txt journal.txt /run/cloud-init \

/var/log/cloud-init.log /var/log/cloud-init-output.log

2.2. How-to guides 29

https://github.com/canonical/cloud-init/issues

cloud-init, Release 24.1.3

Report upstream bugs

Bugs for upstream cloud-init are tracked using GitHub Issues. To file a bug:

1. Collect the necessary debug logs as described above.

2. Report an upstream cloud-init bug on GitHub.

If debug logs are not provided, you will be asked for them before any further time is spent debugging. If you are unable
to obtain the required logs please explain why in the bug.

If your bug is for a specific distro using cloud-init, please first consider reporting it with the downstream distro or
confirm that it still occurs with the latest upstream cloud-init code. See the following section for details on specific
distro reporting.

Distro-specific issues

For issues specific to your distro please use one of the following distro-specific reporting mechanisms:

Ubuntu

To report a bug on Ubuntu use the ubuntu-bug command on the affected system to automatically collect the necessary
logs and file a bug on Launchpad:

$ ubuntu-bug cloud-init

If that does not work or is not an option, please collect the logs using the commands in the above Collect Logs section
and then report the bug on the Ubuntu bug tracker. Make sure to attach your collected logs!

Debian

To file a bug against the Debian package of cloud-init please use the Debian bug tracker to file against ‘Package:
cloud-init’. See the Debian bug reporting wiki page for more details.

Red Hat, CentOS and Fedora

To file a bug against the Red Hat or Fedora packages of cloud-init please use the Red Hat bugzilla.

SUSE and openSUSE

To file a bug against the SUSE packages of cloud-init please use the SUSE bugzilla.

30 Chapter 2. Project and community

https://github.com/canonical/cloud-init/issues
https://bugs.launchpad.net/ubuntu/+source/cloud-init/+filebug
https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=cloud-init;dist=unstable
https://www.debian.org/Bugs/Reporting
https://bugzilla.redhat.com/
https://bugzilla.suse.com/index.cgi

cloud-init, Release 24.1.3

Arch Linux

To file a bug against the Arch package of cloud-init please use the Arch Linux Bugtracker. See the Arch Linux bug
reporting wiki for more details.

How to identify the datasource I’m using

To correctly set up an instance, cloud-init must correctly identify the cloud it is on. Therefore, knowing which
datasource is being used on an instance launch can aid in debugging.

To find out which datasource is being used run the cloud-id command:

cloud-id

This will tell you which datasource is being used – for example:

nocloud

If the cloud-id is not what is expected, then running the ds-identify script in debug mode and providing that in a
bug report can aid in resolving any issues:

sudo DEBUG_LEVEL=2 DI_LOG=stderr /usr/lib/cloud-init/ds-identify --force

The force parameter allows the command to be run again since the instance has already launched. The other options
increase the verbosity of logging and outputs the logs to STDERR.

How to disable cloud-init

One may wish to disable cloud-init to ensure that it doesn’t do anything on subsequent boots. Some parts of cloud-init
may run once per boot otherwise.

There are three cross-platform methods of disabling cloud-init.

Method 1: text file

To disable cloud-init, create the empty file /etc/cloud/cloud-init.disabled. During boot the operating system’s
init system will check for the existence of this file. If it exists, cloud-init will not be started.

Example:

$ touch /etc/cloud/cloud-init.disabled

Method 2: kernel commandline

To disable cloud-init, add cloud-init=disabled to the kernel commandline.

Example (using GRUB2 with Ubuntu):

$ echo 'GRUB_CMDLINE_LINUX="cloud-init=disabled"' >> /etc/default/grub
$ grub-mkconfig -o /boot/efi/EFI/ubuntu/grub.cfg

2.2. How-to guides 31

https://bugs.archlinux.org/
https://wiki.archlinux.org/index.php/Bug_reporting_guidelines
https://wiki.archlinux.org/index.php/Bug_reporting_guidelines

cloud-init, Release 24.1.3

Method 3: environment variable

To disable cloud-init, pass the environment variable KERNEL_CMDLINE=cloud-init=disabled into each of cloud-
init’s processes.

Example (using systemd):

$ echo "DefaultEnvironment=KERNEL_CMDLINE=cloud-init=disabled" >> /etc/systemd/system.
→˓conf

Test pre-release cloud-init

After the cloud-init team creates an upstream release, cloud-init will be released in the -proposed APT repository for
a period of testing. Users are encouraged to test their workloads on this pending release so that bugs can be caught
and fixed prior to becoming more broadly available via the -updates repository. This guide describes how to test the
pre-release package on Ubuntu.

Add the -proposed repository pocket

The -proposed repository pocket will contain the cloud-init package to be tested prior to release in the -updates pocket.

echo "deb http://archive.ubuntu.com/ubuntu $(lsb_release -sc)-proposed main" >> /etc/apt/
→˓sources.list.d/proposed.list
apt update

Install the pre-release cloud-init package

apt install cloud-init

Test the package

Whatever workload you use cloud-init for in production is the best one to test. This ensures that you can discover and
report any bugs that the cloud-init developers missed during testing before cloud-init gets released more broadly.

If issues are found during testing, please file a new cloud-init bug and leave a message in the #cloud-init IRC channel.

Remove the proposed repository

Do this to avoid unintentionally installing other unreleased packages.

rm -f /etc/apt/sources.list.d/proposed.list
apt update

32 Chapter 2. Project and community

https://github.com/canonical/cloud-init/issues
https://kiwiirc.com/nextclient/irc.libera.chat/cloud-init

cloud-init, Release 24.1.3

Remove artefacts and reboot

This will cause cloud-init to rerun as if it is a first boot.

sudo cloud-init clean --logs --reboot

2.3 Explanation

Our explanatory and conceptual guides are written to provide a better understanding of how cloud-init works. They
enable you to expand your knowledge and become better at using and configuring cloud-init.

2.3.1 Introduction to cloud-init

Managing and configuring cloud instances and servers can be a complex and time-consuming task. Cloud-init is an
open source initialisation tool that was designed to make it easier to get your systems up and running with a minimum
of effort, already configured according to your needs.

It’s most often used by developers, system administrators and other IT professionals to automate configuration of VMs,
cloud instances, or machines on a network. For brevity, we’ll refer only to instances for the rest of this page, but assume
we’re also including bare metal and VMs in the discussion as well. By automating routine setup tasks, cloud-init
ensures repeatability and efficiency in your system provisioning.

What is the benefit of cloud-init?

When you deploy a new cloud instance, cloud-init takes an initial configuration that you supply, and it automatically
applies those settings when the instance is created. It’s rather like writing a to-do list, and then letting cloud-init deal
with that list for you.

The real power of cloud-init comes from the fact that you can re-use your configuration instructions as often as you
want, and always get consistent, reliable results. If you’re a system administrator and you want to deploy a whole fleet
of machines, you can do so with a fraction of the time and effort it would take to manually provision them.

What does cloud-init do?

Cloud-init can handle a range of tasks that normally happen when a new instance is created. It’s responsible for activ-
ities like setting the hostname, configuring network interfaces, creating user accounts, and even running scripts. This
streamlines the deployment process; your cloud instances will all be automatically configured in the same way, which
reduces the chance to introduce human error.

How does cloud-init work?

The operation of cloud-init broadly takes place in two separate phases during the boot process. The first phase is
during the early (local) boot stage, before networking has been enabled. The second is during the late boot stages, after
cloud-init has applied the networking configuration.

2.3. Explanation 33

cloud-init, Release 24.1.3

During early boot

In this pre-networking stage, cloud-init discovers the datasource, obtains all the configuration data from it, and config-
ures networking. In this phase, it will:

• Identify the datasource: The hardware is checked for built-in values that will identify the datasource your
instance is running on. The datasource is the source of all configuration data.

• Fetch the configuration: Once the datasource is identified, cloud-init fetches the configuration data from it.
This data tells cloud-init what actions to take. This can be in the form of:

– Metadata about the instance, such as the machine ID, hostname and network config, or

– Vendor data and/or user data. These take the same form, although Vendor data is provided by the cloud
vendor, and user data is provided by the user. These data are usually applied in the post-networking phase,
and might include:

∗ Hardware optimisations

∗ Integration with the specific cloud platform

∗ SSH keys

∗ Custom scripts

• Write network configuration: Cloud-init writes the network configuration and configures DNS, ready to be
applied by the networking services when they come up.

During late boot

In the boot stages that come after the network has been configured, cloud-init runs through the tasks that were not
critical for provisioning. This is where it configures the running instance according to your needs, as specified in the
vendor data and/or user data. It will take care of:

• Configuration management: Cloud-init can interact with tools like Puppet, Ansible, or Chef to apply more
complex configuration - and ensure the system is up-to-date.

• Installing software: Cloud-init can install software at this stage, and run software updates to make sure the
system is fully up-to-date and ready to use.

• User accounts: Cloud-init is able to create and modify user accounts, set default passwords, and configure
permissions.

• Execute user scripts: If any custom scripts were provided in the user data, cloud-init can run them. This allows
additional specified software to be installed, security settings to be applied, etc. It can also inject SSH keys into
the instance’s authorized_keys file, which allows secure remote access to the machine.

After this stage is complete, your instance is fully configured!

34 Chapter 2. Project and community

cloud-init, Release 24.1.3

What’s next?

Now that you have an overview of the basics of what cloud-init is, what it does and how it works, you will probably
want to try it out for yourself .

You can also read in more detail about what cloud-init does during the different boot stages, and the types of configu-
ration you can pass to cloud-init and how they’re used.

2.3.2 Configuration sources

Internally, cloud-init builds a single configuration that is then referenced throughout the life of cloud-init. The
configuration is built from multiple sources such that if a key is defined in multiple sources, the higher priority source
overwrites the lower priority source.

Base configuration

From lowest priority to highest, configuration sources are:

• Hardcoded config: Config that lives within the source of cloud-init and cannot be changed.

• Configuration directory: Anything defined in /etc/cloud/cloud.cfg and /etc/cloud/cloud.cfg.d.

• Runtime config: Anything defined in /run/cloud-init/cloud.cfg.

• Kernel command line: On the kernel command line, anything found between cc: and end_cc will be inter-
preted as cloud-config user data.

These four sources make up the base configuration.

Vendor and user data

Added to the base configuration are vendor data and user data which are both provided by the datasource.

These get fetched from the datasource and are defined at instance launch.

Note: While much of what is defined in the base configuration can be overridden by vendor data and user data, base
configuration sources do not conform to #cloud-config.

Network configuration

Network configuration happens independently from other cloud-init configuration. See network configuration doc-
umentation for more information.

2.3. Explanation 35

https://github.com/canonical/cloud-init/blob/b861ea8a5e1fd0eb33096f60f54eeff42d80d3bd/cloudinit/settings.py#L22

cloud-init, Release 24.1.3

Specifying configuration

End users

Pass user data to the cloud provider. Every platform supporting cloud-init will provide a method of supplying
user data. If you’re unsure how to do this, reference the documentation provided by the cloud platform you’re on.
Additionally, there may be related cloud-init documentation in the datasource section.

Once an instance has been initialised, the user data may not be edited. It is sourced directly from the cloud, so even if
you find a local file that contains user data, it will likely be overwritten in the next boot.

Distro providers

Modify the base config. This often involves submitting a PR to modify the base cloud.cfg template, which is used to
customise /etc/cloud/cloud.cfg per distro. Additionally, a file can be added to /etc/cloud/cloud.cfg.d to
override a piece of the base configuration.

Cloud providers

Pass vendor data. This is the preferred method for clouds to provide their own customisation. In some cases, it may
make sense to modify the base config in the same manner as distro providers on cloud-supported images.

2.3.3 Boot stages

There are five stages to boot:

1. Detect

2. Local

3. Network

4. Config

5. Final

Detect

A platform identification tool called ds-identify runs in the first stage. This tool detects which platform the instance
is running on. This tool is integrated into the init system to disable cloud-init when no platform is found, and enable
cloud-init when a valid platform is detected. This stage might not be present for every installation of cloud-init.

Local

systemd service cloud-init-local.service
runs as soon as possible with / mounted read-write
blocks as much of boot as possible, must block network
modules none

The purpose of the local stage is to:

36 Chapter 2. Project and community

https://github.com/canonical/cloud-init/blob/main/config/cloud.cfg.tmpl

cloud-init, Release 24.1.3

• Locate “local” data sources, and

• Apply networking configuration to the system (including “fallback”).

In most cases, this stage does not do much more than that. It finds the datasource and determines the network configu-
ration to be used. That network configuration can come from:

• datasource: Cloud-provided network configuration via metadata.

• fallback: Cloud-init’s fallback networking consists of rendering the equivalent to dhcp on eth0, which was
historically the most popular mechanism for network configuration of a guest.

• none: Network configuration can be disabled by writing the file /etc/cloud/cloud.cfg with the content:
network: {config: disabled}.

If this is an instance’s first boot, then the selected network configuration is rendered. This includes clearing of all
previous (stale) configuration including persistent device naming with old MAC addresses.

This stage must block network bring-up or any stale configuration that might have already been applied. Otherwise,
that could have negative effects such as DHCP hooks or broadcast of an old hostname. It would also put the system in
an odd state to recover from, as it may then have to restart network devices.

Cloud-init then exits and expects for the continued boot of the operating system to bring network configuration up
as configured.

Note: In the past, local datasources have been only those that were available without network (such as ‘ConfigDrive’).
However, as seen in the recent additions to the DigitalOcean datasource, even data sources that require a network can
operate at this stage.

Network

systemd service cloud-init.service
runs after local stage and configured networking is up
blocks as much of remaining boot as possible
modules cloud_init_modules in /etc/cloud/cloud.cfg

This stage requires all configured networking to be online, as it will fully process any user data that is found. Here,
processing means it will:

• retrieve any #include or #include-once (recursively) including http,

• decompress any compressed content, and

• run any part-handler found.

This stage runs the disk_setup and mountsmodules which may partition and format disks and configure mount points
(such as in /etc/fstab). Those modules cannot run earlier as they may receive configuration input from sources only
available via the network. For example, a user may have provided user data in a network resource that describes how
local mounts should be done.

On some clouds, such as Azure, this stage will create filesystems to be mounted, including ones that have stale (previous
instance) references in /etc/fstab. As such, entries in /etc/fstab other than those necessary for cloud-init to run
should not be done until after this stage.

A part-handler and boothooks will run at this stage.

2.3. Explanation 37

cloud-init, Release 24.1.3

Config

systemd service cloud-config.service
runs after network
blocks nothing
modules cloud_config_modules in /etc/cloud/cloud.cfg

This stage runs config modules only. Modules that do not really have an effect on other stages of boot are run here,
including runcmd.

Final

systemd service cloud-final.service
runs as final part of boot (traditional “rc.local”)
blocks nothing
modules cloud_final_modules in /etc/cloud/cloud.cfg

This stage runs as late in boot as possible. Any scripts that a user is accustomed to running after logging into a system
should run correctly here. Things that run here include:

• package installations,

• configuration management plugins (Ansible, Puppet, Chef, salt-minion), and

• user-defined scripts (i.e., shell scripts passed as user data).

For scripts external to cloud-init looking to wait until cloud-init is finished, the cloud-init status --wait
subcommand can help block external scripts until cloud-init is done without having to write your own systemd
units dependency chains. See status for more info.

First boot determination

Cloud-init has to determine whether or not the current boot is the first boot of a new instance, so that it applies
the appropriate configuration. On an instance’s first boot, it should run all “per-instance” configuration, whereas on a
subsequent boot it should run only “per-boot” configuration. This section describes how cloud-init performs this
determination, as well as why it is necessary.

When it runs, cloud-init stores a cache of its internal state for use across stages and boots.

If this cache is present, then cloud-init has run on this system before1. There are two cases where this could occur.
Most commonly, the instance has been rebooted, and this is a second/subsequent boot. Alternatively, the filesystem
has been attached to a new instance, and this is the instance’s first boot. The most obvious case where this happens is
when an instance is launched from an image captured from a launched instance.

By default, cloud-init attempts to determine which case it is running in by checking the instance ID in the cache
against the instance ID it determines at runtime. If they do not match, then this is an instance’s first boot; otherwise,
it’s a subsequent boot. Internally, cloud-init refers to this behaviour as check.

1 It follows that if this cache is not present, cloud-init has not run on this system before, so this is unambiguously this instance’s first boot.

38 Chapter 2. Project and community

cloud-init, Release 24.1.3

This behaviour is required for images captured from launched instances to behave correctly, and so is the default that
generic cloud images ship with. However, there are cases where it can cause problems2. For these cases, cloud-init
has support for modifying its behaviour to trust the instance ID that is present in the system unconditionally. This
means that cloud-init will never detect a new instance when the cache is present, and it follows that the only way to
cause cloud-init to detect a new instance (and therefore its first boot) is to manually remove cloud-init’s cache.
Internally, this behaviour is referred to as trust.

To configure which of these behaviours to use, cloud-init exposes the manual_cache_clean configuration option.
When false (the default), cloud-init will check and clean the cache if the instance IDs do not match (this is the
default, as discussed above). When true, cloud-init will trust the existing cache (and therefore not clean it).

Manual cache cleaning

Cloud-init ships a command for manually cleaning the cache: cloud-init clean. See clean’s documentation for
further details.

Reverting manual_cache_clean setting

Currently there is no support for switching an instance that is launched with manual_cache_clean: true from
trust behaviour to check behaviour, other than manually cleaning the cache.

Warning: If you want to capture an instance that is currently in trust mode as an image for launching other
instances, you must manually clean the cache. If you do not do so, then instances launched from the captured
image will all detect their first boot as a subsequent boot of the captured instance, and will not apply any per-
instance configuration.

This is a functional issue, but also a potential security one: cloud-init is responsible for rotating SSH host keys
on first boot, and this will not happen on these instances.

2.3.4 User data formats

User data that will be acted upon by cloud-init must be in one of the following types.
2 A couple of ways in which this strict reliance on the presence of a datasource has been observed to cause problems:

• If a cloud’s metadata service is flaky and cloud-init cannot obtain the instance ID locally on that platform, cloud-init’s instance ID
determination will sometimes fail to determine the current instance ID, which makes it impossible to determine if this is an instance’s first
or subsequent boot (#1885527).

• If cloud-init is used to provision a physical appliance or device and an attacker can present a datasource to the device with a differ-
ent instance ID, then cloud-init’s default behaviour will detect this as an instance’s first boot and reset the device using the attacker’s
configuration (this has been observed with the NoCloud datasource in #1879530).

2.3. Explanation 39

https://bugs.launchpad.net/ubuntu/+source/cloud-init/+bug/1885527
https://bugs.launchpad.net/ubuntu/+source/cloud-init/+bug/1879530

cloud-init, Release 24.1.3

Cloud config data

Cloud-config is the simplest way to accomplish some things via user data. Using cloud-config syntax, the user can
specify certain things in a human-friendly format.

These things include:

• apt upgrade should be run on first boot

• a different apt mirror should be used

• additional apt sources should be added

• certain SSH keys should be imported

• and many more. . .

Note: This file must be valid YAML syntax.

See the Cloud config examples section for a commented set of examples of supported cloud config formats.

Begins with: #cloud-config or Content-Type: text/cloud-config when using a MIME archive.

Note: Cloud config data can also render cloud instance metadata variables using jinja templating. See Instance
metadata for more information.

User data script

Typically used by those who just want to execute a shell script.

Begins with: #! or Content-Type: text/x-shellscript when using a MIME archive.

User data scripts can optionally render cloud instance metadata variables using jinja templating. See Instance metadata
for more information.

Example script

Create a script file myscript.sh that contains the following:

#!/bin/sh
echo "Hello World. The time is now $(date -R)!" | tee /root/output.txt

Now run:

$ euca-run-instances --key mykey --user-data-file myscript.sh ami-a07d95c9

40 Chapter 2. Project and community

cloud-init, Release 24.1.3

Kernel command line

When using the NoCloud datasource, users can pass user data via the kernel command line parameters. See the NoCloud
datasource and Kernel command line documentation for more details.

Gzip compressed content

Content found to be gzip compressed will be uncompressed. The uncompressed data will then be used as if it were not
compressed. This is typically useful because user data is limited to ~163841 bytes.

MIME multi-part archive

This list of rules is applied to each part of this multi-part file. Using a MIME multi-part file, the user can specify more
than one type of data.

For example, both a user data script and a cloud-config type could be specified.

Supported content-types are listed from the cloud-init subcommand make-mime:

$ cloud-init devel make-mime --list-types

Example output:

cloud-boothook
cloud-config
cloud-config-archive
cloud-config-jsonp
jinja2
part-handler
x-include-once-url
x-include-url
x-shellscript
x-shellscript-per-boot
x-shellscript-per-instance
x-shellscript-per-once

Helper subcommand to generate MIME messages

The cloud-init make-mime subcommand can also generate MIME multi-part files.

The make-mime subcommand takes pairs of (filename, “text/” mime subtype) separated by a colon (e.g., config.
yaml:cloud-config) and emits a MIME multipart message to stdout.

1 See your cloud provider for applicable user-data size limitations. . .

2.3. Explanation 41

https://github.com/canonical/cloud-init/blob/main/cloudinit/cmd/devel/make_mime.py

cloud-init, Release 24.1.3

Examples

Create user data containing both a cloud-config (config.yaml) and a shell script (script.sh)

$ cloud-init devel make-mime -a config.yaml:cloud-config -a script.sh:x-shellscript >␣
→˓userdata

Create user data containing 3 shell scripts:

• always.sh - run every boot

• instance.sh - run once per instance

• once.sh - run once

$ cloud-init devel make-mime -a always.sh:x-shellscript-per-boot -a instance.sh:x-
→˓shellscript-per-instance -a once.sh:x-shellscript-per-once

include file

This content is an include file.

The file contains a list of URLs, one per line. Each of the URLs will be read and their content will be passed through
this same set of rules, i.e., the content read from the URL can be gzipped, MIME multi-part, or plain text. If an error
occurs reading a file the remaining files will not be read.

Begins with: #include or Content-Type: text/x-include-url when using a MIME archive.

cloud-boothook

This content is boothook data. It is stored in a file under /var/lib/cloud and executed immediately. This is the
earliest hook available. Note, that there is no mechanism provided for running only once. The boothook must take care
of this itself.

It is provided with the instance id in the environment variable INSTANCE_ID. This could be made use of to provide a
‘once-per-instance’ type of functionality.

Begins with: #cloud-boothook or Content-Type: text/cloud-boothook when using a MIME archive.

Part-handler

This is a part-handler: It contains custom code for either supporting new mime-types in multi-part user data, or over-
riding the existing handlers for supported mime-types. It will be written to a file in /var/lib/cloud/data based on
its filename (which is generated).

This must be Python code that contains a list_types function and a handle_part function. Once the section is read
the list_typesmethod will be called. It must return a list of mime-types that this part-handler handles. Since MIME
parts are processed in order, a part-handler part must precede any parts with mime-types it is expected to handle in the
same user data.

The handle_part function must be defined like:

def handle_part(data, ctype, filename, payload):
data = the cloudinit object
ctype = "__begin__", "__end__", or the mime-type of the part that is being handled.

(continues on next page)

42 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

filename = the filename of the part (or a generated filename if none is present in␣
→˓mime data)
payload = the parts' content

Cloud-init will then call the handle_part function once before it handles any parts, once per part received, and
once after all parts have been handled. The '__begin__' and '__end__' sentinels allow the part handler to do
initialisation or teardown before or after receiving any parts.

Begins with: #part-handler or Content-Type: text/part-handler when using a MIME archive.

Example

1 #part-handler
2

3 def list_types():
4 # return a list of mime-types that are handled by this module
5 return(["text/plain", "text/go-cubs-go"])
6

7 def handle_part(data, ctype, filename, payload):
8 # data: the cloudinit object
9 # ctype: '__begin__', '__end__', or the specific mime-type of the part

10 # filename: the filename for the part, or dynamically generated part if
11 # no filename is given attribute is present
12 # payload: the content of the part (empty for begin or end)
13 if ctype == "__begin__":
14 print("my handler is beginning")
15 return
16 if ctype == "__end__":
17 print("my handler is ending")
18 return
19

20 print(f"==== received ctype={ctype} filename={filename} ====")
21 print(payload)
22 print(f"==== end ctype={ctype} filename={filename}")

Also, this blog post offers another example for more advanced usage.

2.3. Explanation 43

http://foss-boss.blogspot.com/2011/01/advanced-cloud-init-custom-handlers.html

cloud-init, Release 24.1.3

Disabling user data

Cloud-init can be configured to ignore any user data provided to instance. This allows custom images to prevent users
from accidentally breaking closed appliances. Setting allow_userdata: false in the configuration will disable
cloud-init from processing user data.

2.3.5 Events and updates

Events

Cloud-init will fetch and apply cloud and user data configuration upon several event types. The two most common
events for cloud-init are when an instance first boots and any subsequent boot thereafter (reboot). In addition to
boot events, cloud-init users and vendors are interested in when devices are added. Cloud-init currently supports
the following event types:

• BOOT_NEW_INSTANCE: New instance first boot.

• BOOT: Any system boot other than BOOT_NEW_INSTANCE.

• BOOT_LEGACY: Similar to BOOT, but applies networking config twice each boot: once during the Local stage,
then again in the Network stage. As this behaviour was previously the default behaviour, this option exists to
prevent regressing such behaviour.

• HOTPLUG: Dynamic add of a system device.

Future work will likely include infrastructure and support for the following events:

• METADATA_CHANGE: An instance’s metadata has changed.

• USER_REQUEST: Directed request to update.

Datasource event support

All datasources support the BOOT_NEW_INSTANCE event by default. Each datasource will declare a set of these events
that it is capable of handling. Datasources may not support all event types. In some cases a system may be configured
to allow a particular event but may be running on a platform whose datasource cannot support the event.

Configuring event updates

Update configuration may be specified via user data, which can be used to enable or disable handling of specific events.
This configuration will be honored as long as the events are supported by the datasource. However, configuration will
always be applied at first boot, regardless of the user data specified.

Updates

Update policy configuration defines which events are allowed to be handled. This is separate from whether a particular
platform or datasource has the capability for such events.

scope: <name of the scope for event policy>
The scope value is a string which defines which domain the event occurs under. Currently, the only known
scope is network, though more scopes may be added in the future. Scopes are defined by convention but
arbitrary values can be used.

when: <list of events to handle for a particular scope >
Each scope requires a when element to specify which events are to allowed to be handled.

44 Chapter 2. Project and community

cloud-init, Release 24.1.3

Hotplug

When the hotplug event is supported by the datasource and configured in user data, cloud-init will respond to the
addition or removal of network interfaces to the system. In addition to fetching and updating the system metadata,
cloud-init will also bring up/down the newly added interface.

Warning: Due to its use of systemd sockets, hotplug functionality is currently incompatible with SELinux on
Linux distributions using systemd. This issue is being tracked in GitHub #3890. Additionally, hotplug support is
considered experimental for non-Alpine and non-Debian-based systems.

Example

Apply network config every boot

On every boot, apply network configuration found in the datasource.

apply network config on every boot
updates:
network:
when: ['boot']

2.3.6 Instance metadata

Kernel command line

Providing configuration data via the kernel command line is somewhat of a last resort, since this method only supports
cloud config starting with #cloud-config, and many datasources do not support injecting kernel command line arguments
without modifying the bootloader.

Despite the limitations of using the kernel command line, cloud-init supports some use-cases.

Note that this page describes kernel command line behavior that applies to all clouds. To provide a local configuration
with an image using kernel command line, see datasource NoCloud which provides more configuration options.

Datasource discovery override

During boot, cloud-init must identify which datasource it is running on (OpenStack, AWS, Azure, GCP, etc). This
discovery step can be optionally overridden by specifying the datasource name, such as:

root=/dev/sda ro ds=openstack

2.3. Explanation 45

https://github.com/canonical/cloud-init/issues/3890

cloud-init, Release 24.1.3

Kernel cloud-config-url configuration

In order to allow an ephemeral, or otherwise pristine image to receive some configuration, cloud-init can read a
URL directed by the kernel command line and proceed as if its data had previously existed.

This allows for configuring a metadata service, or some other data.

When the local stage runs, it will check to see if cloud-config-url appears in key/value fashion in the kernel
command line, such as:

root=/dev/sda ro cloud-config-url=http://foo.bar.zee/abcde

Cloud-init will then read the contents of the given URL. If the content starts with #cloud-config, it will store
that data to the local filesystem in a static filename /etc/cloud/cloud.cfg.d/91_kernel_cmdline_url.cfg,
and consider it as part of the config from that point forward.

Note: If /etc/cloud/cloud.cfg.d/91_kernel_cmdline_url.cfg already exists, cloud-init will not overwrite
the file, and the cloud-config-url parameter is completely ignored.

This is useful, for example, to be able to configure the MAAS datasource by controlling the kernel command line from
outside the image, you can append:

cloud-config-url=http://your.url.here/abcdefg

Then, have the following content at that url:

#cloud-config
datasource:
MAAS:
metadata_url: http://mass-host.localdomain/source
consumer_key: Xh234sdkljf
token_key: kjfhgb3n
token_secret: 24uysdfx1w4

Warning: url kernel command line key is deprecated. Please use cloud-config-url parameter instead.

Note: Since cloud-config-url= is so generic, in order to avoid false positives, only cloud config user data starting
with #cloud-config is supported.

Note: The cloud-config-url= is unencrypted http GET, and may contain credentials. Care must be taken to ensure
this data is only transferred via trusted channels (i.e., within a closed system).

46 Chapter 2. Project and community

cloud-init, Release 24.1.3

What is instance-data?

Each cloud provider presents unique configuration metadata to a launched cloud instance. Cloud-init crawls this
metadata and then caches and exposes this information as a standardised and versioned JSON object known as
instance-data. This instance-data may then be queried or later used by cloud-init in templated configuration
and scripts.

An example of a small subset of instance-data on a launched EC2 instance:

{
"v1": {
"cloud_name": "aws",
"distro": "ubuntu",
"distro_release": "jammy",
"distro_version": "22.04",
"instance_id": "i-06b5687b4d7b8595d",
"machine": "x86_64",
"platform": "ec2",
"python_version": "3.10.4",
"region": "us-east-2",
"variant": "ubuntu"

}
}

Discovery

One way to easily explore which instance-data variables are available on your machine is to use the cloud-init query
tool. Warnings or exceptions will be raised on invalid instance-data keys, paths or invalid syntax.

The query command also publishes userdata and vendordata keys to the root user which will contain the decoded
user and vendor data provided to this instance. Non-root users referencing userdata or vendordata keys will see
only redacted values.

Note: To save time designing a user data template for a specific cloud’s instance-data.json, use the render
command on an instance booted on your favorite cloud. See devel for more information.

Using instance-data

instance-data can be used in:

• User data scripts.

• Cloud-config data.

• Base configuration.

• Command line interface via cloud-init query or cloud-init devel render.

The aforementioned configuration sources support jinja template rendering. When the first line of the provided config-
uration begins with ## template: jinja, cloud-init will use jinja to render that file. Any instance-data variables
are surfaced as jinja template variables.

2.3. Explanation 47

cloud-init, Release 24.1.3

Note: Trying to reference jinja variables that don’t exist in instance-data will result in warnings in /
var/log/cloud-init.log and the following string in your rendered user-data: CI_MISSING_JINJA_VAR/
<your_varname>.

Sensitive data such as user passwords may be contained in instance-data. Cloud-init separates this sensitive data
such that is it only readable by root. In the case that a non-root user attempts to read sensitive instance-data, they
will receive redacted data or the same warnings and text that occur if a variable does not exist.

Example: Cloud config with instance-data

template: jinja
#cloud-config
runcmd:

- echo 'EC2 public hostname allocated to instance: {{
ds.meta_data.public_hostname }}' > /tmp/instance_metadata

- echo 'EC2 availability zone: {{ v1.availability_zone }}' >>
/tmp/instance_metadata

- curl -X POST -d '{"hostname": "{{ds.meta_data.public_hostname }}",
"availability-zone": "{{ v1.availability_zone }}"}'
https://example.com

Example: User data script with instance-data

template: jinja
#!/bin/bash
{% if v1.region == 'us-east-2' -%}
echo 'Installing custom proxies for {{ v1.region }}'
sudo apt-get install my-xtra-fast-stack
{%- endif %}
...

Example: CLI discovery of instance-data

List all instance-data keys and values as root user
$ sudo cloud-init query --all
{...}

List all top-level instance-data keys available
$ cloud-init query --list-keys

Introspect nested keys on an object
$ cloud-init query -f "{{ds.keys()}}"
dict_keys(['meta_data', '_doc'])

Failure to reference valid dot-delimited key path on a known top-level key
$ cloud-init query v1.not_here
ERROR: instance-data 'v1' has no 'not_here'

(continues on next page)

48 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

Test expected value using valid instance-data key path
$ cloud-init query -f "My AMI: {{ds.meta_data.ami_id}}"
My AMI: ami-0fecc35d3c8ba8d60

The --format command renders jinja templates, this can also be used
to develop and test jinja template constructs
$ cat > test-templating.yaml <<EOF
{% for val in ds.meta_data.keys() %}
- {{ val }}
{% endfor %}
EOF

$ cloud-init query --format="$(cat test-templating.yaml)"
- instance_id
- dsmode
- local_hostname

Reference

Storage locations

• /run/cloud-init/instance-data.json: world-readable JSON containing standardised keys, sensitive keys
redacted.

• /run/cloud-init/instance-data-sensitive.json: root-readable unredacted JSON blob.

• /run/cloud-init/combined-cloud-config.json: root-readable unredacted JSON blob. Any meta-data,
vendor-data and user-data overrides are applied to the /run/cloud-init/combined-cloud-config.json
config values.

instance-data.json top level keys

base64_encoded_keys

A list of forward-slash delimited key paths into the instance-data.json object whose value is base64encoded for
JSON compatibility. Values at these paths should be decoded to get the original value.

features

A dictionary of feature name and boolean value pairs. A value of True means the feature is enabled.

2.3. Explanation 49

cloud-init, Release 24.1.3

sensitive_keys

A list of forward-slash delimited key paths into the instance-data.json object whose value is considered by the
datasource as ‘security sensitive’. Only the keys listed here will be redacted from instance-data.json for non-root
users.

merged_cfg

Deprecated use merged_system_cfg instead.

merged_system_cfg

Merged cloud-init Base configuration from /etc/cloud/cloud.cfg and /etc/cloud/cloud-cfg.d. Values
under this key could contain sensitive information such as passwords, so it is included in the sensitive-keys list
which is only readable by root.

Note: merged_system_cfg represents only the merged config from the underlying filesystem. These values can
be overridden by meta-data, vendor-data or user-data. The fully merged cloud-config provided to a machine which
accounts for any supplemental overrides is the file /run/cloud-init/combined-cloud-config.json.

ds

Datasource-specific metadata crawled for the specific cloud platform. It should closely represent the structure of the
cloud metadata crawled. The structure of content and details provided are entirely cloud-dependent. Mileage will vary
depending on what the cloud exposes. The content exposed under the ds key is currently experimental and expected
to change slightly in the upcoming cloud-init release.

sys_info

Information about the underlying OS, Python, architecture and kernel. This represents the data collected by
cloudinit.util.system_info.

system_info

This is a cloud-init configuration key present in /etc/cloud/cloud.cfg which describes cloud-init’s configured
default_user, distro, network renderers, and paths that cloud-init will use. Not to be confused with the underlying host
sys_info key above.

50 Chapter 2. Project and community

cloud-init, Release 24.1.3

v1

Standardised cloud-init metadata keys, these keys are guaranteed to exist on all cloud platforms. They will also
retain their current behaviour and format, and will be carried forward even if cloud-init introduces a new version of
standardised keys with v2.

To cut down on keystrokes on the command line, cloud-init also provides top-level key aliases for any standardised
v# keys present. The preceding v1 is not required of v1.var_name These aliases will represent the value of the highest
versioned standard key. For example, cloud_name value will be v2.cloud_name if both v1 and v2 keys are present
in instance-data.json.

Cloud-init also provides jinja-safe key aliases for any instance-data keys which contain jinja operator characters
such as +, -, ., /, etc. Any jinja operator will be replaced with underscores in the jinja-safe key alias. This allows
for cloud-init templates to use aliased variable references which allow for jinja’s dot-notation reference such as {{
ds.v1_0.my_safe_key }} instead of {{ ds["v1.0"]["my/safe-key"] }}.

Standardised instance-data.json v1 keys

v1._beta_keys

List of standardised keys still in ‘beta’. The format, intent or presence of these keys can change. Do not consider them
production-ready.

Example output:

• [subplatform]

v1.cloud_name

Where possible this will indicate the ‘name’ of the cloud the system is running on. This is different than the ‘platform’
item. For example, the cloud name of Amazon Web Services is ‘aws’, while the platform is ‘ec2’.

If determining a specific name is not possible or provided in meta-data, then this filed may contain the same content
as ‘platform’.

Example output:

• aws

• openstack

• azure

• configdrive

• nocloud

• ovf

2.3. Explanation 51

cloud-init, Release 24.1.3

v1.distro, v1.distro_version, v1.distro_release

This shall be the distro name, version and release as determined by cloudinit.util.get_linux_distro.

Example output:

• alpine, 3.12.0, ‘Alpine Linux v3.12’

• centos, 7.5, core

• debian, 9, stretch

• freebsd, 12.0-release-p10,

• opensuse, 42.3, x86_64

• opensuse-tumbleweed, 20180920, x86_64

• redhat, 7.5, ‘maipo’

• sles, 12.3, x86_64

• ubuntu, 20.04, focal

v1.instance_id

Unique instance_id allocated by the cloud.

Example output:

• i-<hash>

v1.kernel_release

This shall be the running kernel uname -r.

Example output:

• 5.3.0-1010-aws

v1.local_hostname

The internal or local hostname of the system.

Example output:

• ip-10-41-41-70

• <user-provided-hostname>

52 Chapter 2. Project and community

cloud-init, Release 24.1.3

v1.machine

This shall be the running cpu machine architecture uname -m.

Example output:

• x86_64

• i686

• ppc64le

• s390x

v1.platform

An attempt to identify the cloud platform instance that the system is running on.

Example output:

• ec2

• openstack

• lxd

• gce

• nocloud

• ovf

v1.subplatform

Additional platform details describing the specific source or type of metadata used. The format of subplatform will be:

<subplatform_type> (<url_file_or_dev_path>)

Example output:

• metadata (http://169.254.169.254)

• seed-dir (/path/to/seed-dir/)

• config-disk (/dev/cd0)

• configdrive (/dev/sr0)

v1.public_ssh_keys

A list of SSH keys provided to the instance by the datasource metadata.

Example output:

• [‘ssh-rsa AA. . . ’, . . .]

2.3. Explanation 53

http://169.254.169.254

cloud-init, Release 24.1.3

v1.python_version

The version of Python that is running cloud-init as determined by cloudinit.util.system_info.

Example output:

• 3.7.6

v1.region

The physical region/data centre in which the instance is deployed.

Example output:

• us-east-2

v1.availability_zone

The physical availability zone in which the instance is deployed.

Example output:

• us-east-2b

• nova

• null

Example Output

Below is an example of /run/cloud-init/instance-data-sensitive.json on an EC2 instance:

{
"_beta_keys": [
"subplatform"

],
"availability_zone": "us-east-1b",
"base64_encoded_keys": [],
"merged_cfg": {
"_doc": "Merged cloud-init base config from /etc/cloud/cloud.cfg and /etc/cloud/cloud.

→˓cfg.d/",
"_log": [
"[loggers]\nkeys=root,cloudinit\n\n[handlers]\nkeys=consoleHandler,cloudLogHandler\n\

→˓n[formatters]\nkeys=simpleFormatter,arg0Formatter\n\n[logger_root]\nlevel=DEBUG\
→˓nhandlers=consoleHandler,cloudLogHandler\n\n[logger_cloudinit]\nlevel=DEBUG\
→˓nqualname=cloudinit\nhandlers=\npropagate=1\n\n[handler_consoleHandler]\
→˓nclass=StreamHandler\nlevel=WARNING\nformatter=arg0Formatter\nargs=(sys.stderr,)\n\
→˓n[formatter_arg0Formatter]\nformat=%(asctime)s - %(filename)s[%(levelname)s]:
→˓%(message)s\n\n[formatter_simpleFormatter]\nformat=[CLOUDINIT] %(filename)s[
→˓%(levelname)s]: %(message)s\n",

"[handler_cloudLogHandler]\nclass=FileHandler\nlevel=DEBUG\nformatter=arg0Formatter\
→˓nargs=('/var/log/cloud-init.log',)\n",

"[handler_cloudLogHandler]\nclass=handlers.SysLogHandler\nlevel=DEBUG\
→˓nformatter=simpleFormatter\nargs=(\"/dev/log\", handlers.SysLogHandler.LOG_USER)\n"

(continues on next page)

54 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

],
"cloud_config_modules": [
"snap",
"ssh_import_id",
"locale",
"set_passwords",
"grub_dpkg",
"apt_pipelining",
"apt_configure",
"ubuntu_pro",
"ntp",
"timezone",
"disable_ec2_metadata",
"runcmd",
"byobu"
],
"cloud_final_modules": [
"package_update_upgrade_install",
"fan",
"landscape",
"lxd",
"ubuntu_drivers",
"puppet",
"chef",
"mcollective",
"salt_minion",
"scripts_vendor",
"scripts_per_once",
"scripts_per_boot",
"scripts_per_instance",
"scripts_user",
"ssh_authkey_fingerprints",
"keys_to_console",
"phone_home",
"final_message",
"power_state_change"
],
"cloud_init_modules": [
"seed_random",
"bootcmd",
"write_files",
"growpart",
"resizefs",
"disk_setup",
"mounts",
"set_hostname",
"update_hostname",
"update_etc_hosts",
"ca_certs",
"rsyslog",
"users_groups",
"ssh"

(continues on next page)

2.3. Explanation 55

cloud-init, Release 24.1.3

(continued from previous page)

],
"datasource_list": [
"Ec2",
"None"
],
"def_log_file": "/var/log/cloud-init.log",
"disable_root": true,
"log_cfgs": [
[
"[loggers]\nkeys=root,cloudinit\n\n[handlers]\nkeys=consoleHandler,cloudLogHandler\n\

→˓n[formatters]\nkeys=simpleFormatter,arg0Formatter\n\n[logger_root]\nlevel=DEBUG\
→˓nhandlers=consoleHandler,cloudLogHandler\n\n[logger_cloudinit]\nlevel=DEBUG\
→˓nqualname=cloudinit\nhandlers=\npropagate=1\n\n[handler_consoleHandler]\
→˓nclass=StreamHandler\nlevel=WARNING\nformatter=arg0Formatter\nargs=(sys.stderr,)\n\
→˓n[formatter_arg0Formatter]\nformat=%(asctime)s - %(filename)s[%(levelname)s]:
→˓%(message)s\n\n[formatter_simpleFormatter]\nformat=[CLOUDINIT] %(filename)s[
→˓%(levelname)s]: %(message)s\n",

"[handler_cloudLogHandler]\nclass=FileHandler\nlevel=DEBUG\nformatter=arg0Formatter\
→˓nargs=('/var/log/cloud-init.log',)\n"

]
],
"output": {
"all": "| tee -a /var/log/cloud-init-output.log"
},
"preserve_hostname": false,
"syslog_fix_perms": [
"syslog:adm",
"root:adm",
"root:wheel",
"root:root"
],
"users": [
"default"
],
"vendor_data": {
"enabled": true,
"prefix": []
}
},
"cloud_name": "aws",
"distro": "ubuntu",
"distro_release": "focal",
"distro_version": "20.04",
"ds": {
"_doc": "EXPERIMENTAL: The structure and format of content scoped under the 'ds' key␣

→˓may change in subsequent releases of cloud-init.",
"_metadata_api_version": "2016-09-02",
"dynamic": {
"instance_identity": {
"document": {
"accountId": "329910648901",
"architecture": "x86_64",

(continues on next page)

56 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

"availabilityZone": "us-east-1b",
"billingProducts": null,
"devpayProductCodes": null,
"imageId": "ami-02e8aa396f8be3b6d",
"instanceId": "i-0929128ff2f73a2f1",
"instanceType": "t2.micro",
"kernelId": null,
"marketplaceProductCodes": null,
"pendingTime": "2020-02-27T20:46:18Z",
"privateIp": "172.31.81.43",
"ramdiskId": null,
"region": "us-east-1",
"version": "2017-09-30"
},
"pkcs7": [
"MIAGCSqGSIb3DQ...",
"REDACTED",
"AhQUgq0iPWqPTVnT96tZE6L1XjjLHQAAAAAAAA=="
],
"rsa2048": [
"MIAGCSqGSIb...",
"REDACTED",
"clYQvuE45xXm7Yreg3QtQbrP//owl1eZHj6s350AAAAAAAA="
],
"signature": [
"dA+QV+LLCWCRNddnrKleYmh2GvYo+t8urDkdgmDSsPi",
"REDACTED",
"kDT4ygyJLFkd3b4qjAs="
]

}
},
"meta_data": {
"ami_id": "ami-02e8aa396f8be3b6d",
"ami_launch_index": "0",
"ami_manifest_path": "(unknown)",
"block_device_mapping": {
"ami": "/dev/sda1",
"root": "/dev/sda1"

},
"hostname": "ip-172-31-81-43.ec2.internal",
"instance_action": "none",
"instance_id": "i-0929128ff2f73a2f1",
"instance_type": "t2.micro",
"local_hostname": "ip-172-31-81-43.ec2.internal",
"local_ipv4": "172.31.81.43",
"mac": "12:7e:c9:93:29:af",
"metrics": {
"vhostmd": "<?xml version=\"1.0\" encoding=\"UTF-8\"?>"

},
"network": {
"interfaces": {
"macs": {

(continues on next page)

2.3. Explanation 57

cloud-init, Release 24.1.3

(continued from previous page)

"12:7e:c9:93:29:af": {
"device_number": "0",
"interface_id": "eni-0c07a0474339b801d",
"ipv4_associations": {
"3.89.187.177": "172.31.81.43"
},
"local_hostname": "ip-172-31-81-43.ec2.internal",
"local_ipv4s": "172.31.81.43",
"mac": "12:7e:c9:93:29:af",
"owner_id": "329910648901",
"public_hostname": "ec2-3-89-187-177.compute-1.amazonaws.com",
"public_ipv4s": "3.89.187.177",
"security_group_ids": "sg-0100038b68aa79986",
"security_groups": "launch-wizard-3",
"subnet_id": "subnet-04e2d12a",
"subnet_ipv4_cidr_block": "172.31.80.0/20",
"vpc_id": "vpc-210b4b5b",
"vpc_ipv4_cidr_block": "172.31.0.0/16",
"vpc_ipv4_cidr_blocks": "172.31.0.0/16"

}
}
}

},
"placement": {
"availability_zone": "us-east-1b"

},
"profile": "default-hvm",
"public_hostname": "ec2-3-89-187-177.compute-1.amazonaws.com",
"public_ipv4": "3.89.187.177",
"reservation_id": "r-0c481643d15766a02",
"security_groups": "launch-wizard-3",
"services": {
"domain": "amazonaws.com",
"partition": "aws"

}
}
},
"instance_id": "i-0929128ff2f73a2f1",
"kernel_release": "5.3.0-1010-aws",
"local_hostname": "ip-172-31-81-43",
"machine": "x86_64",
"platform": "ec2",
"public_ssh_keys": [],
"python_version": "3.7.6",
"region": "us-east-1",
"sensitive_keys": [],
"subplatform": "metadata (http://169.254.169.254)",
"sys_info": {
"dist": [
"ubuntu",
"20.04",
"focal"

(continues on next page)

58 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

],
"platform": "Linux-5.3.0-1010-aws-x86_64-with-Ubuntu-20.04-focal",
"python": "3.7.6",
"release": "5.3.0-1010-aws",
"system": "Linux",
"uname": [
"Linux",
"ip-172-31-81-43",
"5.3.0-1010-aws",
"#11-Ubuntu SMP Thu Jan 16 07:59:32 UTC 2020",
"x86_64",
"x86_64"
],
"variant": "ubuntu"

},
"system_platform": "Linux-5.3.0-1010-aws-x86_64-with-Ubuntu-20.04-focal",
"userdata": "#cloud-config\nssh_import_id: [<my-launchpad-id>]\n...",
"v1": {
"_beta_keys": [
"subplatform"
],
"availability_zone": "us-east-1b",
"cloud_name": "aws",
"distro": "ubuntu",
"distro_release": "focal",
"distro_version": "20.04",
"instance_id": "i-0929128ff2f73a2f1",
"kernel": "5.3.0-1010-aws",
"local_hostname": "ip-172-31-81-43",
"machine": "x86_64",
"platform": "ec2",
"public_ssh_keys": [],
"python": "3.7.6",
"region": "us-east-1",
"subplatform": "metadata (http://169.254.169.254)",
"system_platform": "Linux-5.3.0-1010-aws-x86_64-with-Ubuntu-20.04-focal",
"variant": "ubuntu"
},
"variant": "ubuntu",
"vendordata": ""

}

2.3. Explanation 59

cloud-init, Release 24.1.3

2.3.7 Vendor data

Overview

Vendor data is data provided by the entity that launches an instance (e.g., the cloud provider). This data can be used to
customise the image to fit into the particular environment it is being run in.

Vendor data follows the same rules as user data, with the following caveats:

1. Users have ultimate control over vendor data. They can disable its execution or disable handling of specific parts
of multi-part input.

2. By default it only runs on first boot.

3. Vendor data can be disabled by the user. If the use of vendor data is required for the instance to run, then vendor
data should not be used.

4. User-supplied cloud-config is merged over cloud-config from vendor data.

Users providing cloud-config data can use the #cloud-config-jsonp method to more finely control their modifica-
tions to the vendor-supplied cloud-config. For example, if both vendor and user have provided runcmd then the default
merge handler will cause the user’s runcmd to override the one provided by the vendor. To append to runcmd, the user
could better provide multi-part input with a cloud-config-jsonp part like:

#cloud-config-jsonp
[{ "op": "add", "path": "/runcmd", "value": ["my", "command", "here"]}]

Further, we strongly advise vendors to not “be evil”. By evil, we mean any action that could compromise a system.
Since users trust you, please take care to make sure that any vendor data is safe, atomic, idempotent and does not put
your users at risk.

Input formats

Cloud-init will download and cache to filesystem any vendor data that it finds. Vendor data is handled exactly like
user data. This means that the vendor can supply multi-part input and have those parts acted on in the same way as
with user data.

The only differences are:

• Vendor-data-defined scripts are stored in a different location than user-data-defined scripts (to avoid namespace
collision).

• The user can disable part handlers via the cloud-config settings. For example, to disable handling of ‘part-
handlers’ in vendor data, the user could provide user data like this:

#cloud-config
vendordata: {excluded: 'text/part-handler'}

60 Chapter 2. Project and community

cloud-init, Release 24.1.3

Examples

You can find examples in the examples subdirectory.

Additionally, the tools directory contains write-mime-multipart, which can be used to easily generate MIME
multi-part files from a list of input files. That data can then be given to an instance.

See write-mime-multipart --help for usage.

2.3.8 Security

Security policy

The following documents the upstream cloud-init security policy.

Reporting

If a security bug is found, please send an email to cloud-init-security@lists.canonical.com . After the bug is received,
the issue is triaged within 2 working days of being reported and a response is sent to the reporter.

cloud-init-security

The cloud-init-security Launchpad team is a private, invite-only team used to discuss and coordinate security issues
with the project.

Any issues disclosed to the cloud-init-security mailing list are considered embargoed and should only be discussed
with other members of the cloud-init-security mailing list before the coordinated release date, unless specific exception
is granted by the administrators of the mailing list. This includes disclosure of any details related to the vulnerability
or the presence of a vulnerability itself. Violation of this policy may result in removal from the list for the company or
individual involved.

Evaluation

If the reported bug is deemed a real security issue a CVE is assigned by the Canonical Security Team as CVE Numbering
Authority (CNA).

If it is deemed a regular, non-security issue, the reporter will be asked to follow typical bug reporting procedures.

In addition to the disclosure timeline, the core Canonical cloud-init team will enlist the expertise of the Ubuntu Security
team for guidance on industry-standard disclosure practices as necessary.

If an issue specifically involves another distro or cloud vendor, additional individuals will be informed of the issue to
help in evaluation.

2.3. Explanation 61

mailto:cloud-init-security@lists.canonical.com

cloud-init, Release 24.1.3

Disclosure

Disclosure of security issues will be made with a public statement. Once the determined time for disclosure has arrived
the following will occur:

• A public bug is filed/made public with vulnerability details, CVE, mitigations and where to obtain the fix

• An email is sent to the public cloud-init mailing list

The disclosure timeframe is coordinated with the reporter and members of the cloud-init-security list. This depends
on a number of factors:

• The reporter might have their own disclosure timeline (e.g. Google Project Zero and many others use a 90-days
after initial report OR when a fix becomes public)

• It might take time to decide upon and develop an appropriate fix

• A distros might want extra time to backport any possible fixes before the fix becomes public

• A cloud may need additional time to prepare to help customers or implement a fix

• The issue might be deemed low priority

• May wish to align with an upcoming planned release

2.3.9 Performance

The analyze subcommand was added to cloud-init to help analyze cloud-init boot time performance. It is
loosely based on systemd-analyze, where there are four subcommands:

• blame

• show

• dump

• boot

Usage

The analyze command requires one of the four subcommands:

$ cloud-init analyze blame
$ cloud-init analyze show
$ cloud-init analyze dump
$ cloud-init analyze boot

Availability

The analyze boot subcommand only works on operating systems that use systemd.

62 Chapter 2. Project and community

https://lists.launchpad.net/cloud-init/

cloud-init, Release 24.1.3

Subcommands

Blame

The blame subcommand matches systemd-analyze blame where it prints, in descending order, the units that took
the longest time to run. This output is highly useful for examining where cloud-init is spending its time.

$ cloud-init analyze blame

Example output:

-- Boot Record 01 --
00.80300s (init-network/config-growpart)
00.64300s (init-network/config-resizefs)
00.62100s (init-network/config-ssh)
00.57300s (modules-config/config-grub_dpkg)
00.40300s (init-local/search-NoCloud)
00.38200s (init-network/config-users_groups)
00.19800s (modules-config/config-apt_configure)
00.03700s (modules-final/config-keys_to_console)
00.02100s (init-network/config-update_etc_hosts)
00.02100s (init-network/check-cache)
00.00800s (modules-final/config-ssh_authkey_fingerprints)
00.00800s (init-network/consume-vendor-data)
00.00600s (modules-config/config-timezone)
00.00500s (modules-final/config-final_message)
00.00400s (init-network/consume-user-data)
00.00400s (init-network/config-mounts)
00.00400s (init-network/config-disk_setup)
00.00400s (init-network/config-bootcmd)
00.00400s (init-network/activate-datasource)
00.00300s (init-network/config-update_hostname)
00.00300s (init-network/config-set_hostname)
00.00200s (modules-final/config-snappy)
00.00200s (init-network/config-rsyslog)
00.00200s (init-network/config-ca_certs)
00.00200s (init-local/check-cache)
00.00100s (modules-final/config-scripts_vendor)
00.00100s (modules-final/config-scripts_per_once)
00.00100s (modules-final/config-salt_minion)
00.00100s (modules-final/config-phone_home)
00.00100s (modules-final/config-package_update_upgrade_install)
00.00100s (modules-final/config-fan)
00.00100s (modules-config/config-ubuntu_pro)
00.00100s (modules-config/config-ssh_import_id)
00.00100s (modules-config/config-snap)
00.00100s (modules-config/config-set_passwords)
00.00100s (modules-config/config-runcmd)
00.00100s (modules-config/config-locale)
00.00100s (modules-config/config-byobu)
00.00100s (modules-config/config-apt_pipelining)
00.00100s (init-network/config-write_files)
00.00100s (init-network/config-seed_random)

(continues on next page)

2.3. Explanation 63

cloud-init, Release 24.1.3

(continued from previous page)

00.00000s (modules-final/config-ubuntu_drivers)
00.00000s (modules-final/config-scripts_user)
00.00000s (modules-final/config-scripts_per_instance)
00.00000s (modules-final/config-scripts_per_boot)
00.00000s (modules-final/config-puppet)
00.00000s (modules-final/config-power_state_change)
00.00000s (modules-final/config-mcollective)
00.00000s (modules-final/config-lxd)
00.00000s (modules-final/config-landscape)
00.00000s (modules-final/config-chef)
00.00000s (modules-config/config-snap_config)
00.00000s (modules-config/config-ntp)
00.00000s (modules-config/config-disable_ec2_metadata)
00.00000s (init-network/setup-datasource)

1 boot records analyzed

Show

The show subcommand is similar to systemd-analyze critical-chain which prints a list of units, the time they
started and how long they took. Cloud-init has five boot stages, and within each stage a number of modules may run
depending on configuration. cloudinit-analyze show will, for each boot, print this information and a summary of
the total time.

The following is an abbreviated example of the show subcommand:

$ cloud-init analyze show

Example output:

-- Boot Record 01 --
The total time elapsed since completing an event is printed after the "@" character.
The time the event takes is printed after the "+" character.

Starting stage: init-local
|``->no cache found @00.01700s +00.00200s
|`->found local data from DataSourceNoCloud @00.11000s +00.40300s
Finished stage: (init-local) 00.94200 seconds

Starting stage: init-network
|`->restored from cache with run check: DataSourceNoCloud [seed=/dev/sr0][dsmode=net]␣
→˓@04.79500s +00.02100s
|`->setting up datasource @04.88900s +00.00000s
|`->reading and applying user-data @04.90100s +00.00400s
|`->reading and applying vendor-data @04.90500s +00.00800s
|`->activating datasource @04.95200s +00.00400s
Finished stage: (init-network) 02.72100 seconds

Starting stage: modules-config
|`->config-snap ran successfully @15.43100s +00.00100s
...

(continues on next page)

64 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

|`->config-runcmd ran successfully @16.22300s +00.00100s
|`->config-byobu ran successfully @16.23400s +00.00100s
Finished stage: (modules-config) 00.83500 seconds

Starting stage: modules-final
|`->config-snappy ran successfully @16.87400s +00.00200s
|`->config-package_update_upgrade_install ran successfully @16.87600s +00.00100s
...
|`->config-final_message ran successfully @16.93700s +00.00500s
|`->config-power_state_change ran successfully @16.94300s +00.00000s
Finished stage: (modules-final) 00.10300 seconds

Total Time: 4.60100 seconds

1 boot records analyzed

If additional boot records are detected then they are printed out from oldest to newest.

Dump

The dump subcommand simply dumps the cloud-init logs that the analyze module is performing its analysis on,
and returns a list of dictionaries that can be consumed for other reporting needs. Each element in the list is a boot entry.

$ cloud-init analyze dump

Example output:

[
{
"description": "starting search for local datasources",
"event_type": "start",
"name": "init-local",
"origin": "cloudinit",
"timestamp": 1567057578.037

},
{
"description": "attempting to read from cache [check]",
"event_type": "start",
"name": "init-local/check-cache",
"origin": "cloudinit",
"timestamp": 1567057578.054

},
{
"description": "no cache found",
"event_type": "finish",
"name": "init-local/check-cache",
"origin": "cloudinit",
"result": "SUCCESS",
"timestamp": 1567057578.056

},
{

(continues on next page)

2.3. Explanation 65

cloud-init, Release 24.1.3

(continued from previous page)

"description": "searching for local data from DataSourceNoCloud",
"event_type": "start",
"name": "init-local/search-NoCloud",
"origin": "cloudinit",
"timestamp": 1567057578.147

},
{
"description": "found local data from DataSourceNoCloud",
"event_type": "finish",
"name": "init-local/search-NoCloud",
"origin": "cloudinit",
"result": "SUCCESS",
"timestamp": 1567057578.55

},
{
"description": "searching for local datasources",
"event_type": "finish",
"name": "init-local",
"origin": "cloudinit",
"result": "SUCCESS",
"timestamp": 1567057578.979

},
{
"description": "searching for network datasources",
"event_type": "start",
"name": "init-network",
"origin": "cloudinit",
"timestamp": 1567057582.814

},
{
"description": "attempting to read from cache [trust]",
"event_type": "start",
"name": "init-network/check-cache",
"origin": "cloudinit",
"timestamp": 1567057582.832

},
...
{
"description": "config-power_state_change ran successfully",
"event_type": "finish",
"name": "modules-final/config-power_state_change",
"origin": "cloudinit",
"result": "SUCCESS",
"timestamp": 1567057594.98

},
{
"description": "running modules for final",
"event_type": "finish",
"name": "modules-final",
"origin": "cloudinit",
"result": "SUCCESS",
"timestamp": 1567057594.982

(continues on next page)

66 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

}
]

Boot

The boot subcommand prints out kernel-related timestamps that are not included in any of the cloud-init logs.
There are three different timestamps that are presented to the user:

• kernel start

• kernel finish boot

• cloud-init start

This was added for additional clarity into the boot process that cloud-init does not have control over, to aid in
debugging performance issues related to cloud-init startup, and tracking regression.

$ cloud-init analyze boot

Example output:

-- Most Recent Boot Record --
Kernel Started at: 2019-08-29 01:35:37.753790
Kernel ended boot at: 2019-08-29 01:35:38.807407
Kernel time to boot (seconds): 1.053617000579834
Cloud-init activated by systemd at: 2019-08-29 01:35:43.992460
Time between Kernel end boot and Cloud-init activation (seconds): 5.185053110122681
Cloud-init start: 2019-08-29 08:35:45.867000

successful

Timestamp gathering

The following boot-related timestamps are gathered on demand when cloud-init analyze boot runs:

• Kernel startup gathered from system uptime

• Kernel finishes initialization from systemd UserSpaceMonotonicTimestamp property

• Cloud-init activation from the property InactiveExitTimestamp of the cloud-init local systemd unit

In order to gather the necessary timestamps using systemd, running the following command will gather the
UserspaceTimestamp:

$ systemctl show -p UserspaceTimestampMonotonic

Example output:

UserspaceTimestampMonotonic=989279

The UserspaceTimestamp tracks when the init system starts, which is used as an indicator of the kernel finishing
initialisation.

Running the following command will gather the InactiveExitTimestamp:

2.3. Explanation 67

cloud-init, Release 24.1.3

$ systemctl show cloud-init-local -p InactiveExitTimestampMonotonic

Example output:

InactiveExitTimestampMonotonic=4493126

The InactiveExitTimestamp tracks when a particular systemd unit transitions from the Inactive to Active state,
which can be used to mark the beginning of systemd’s activation of cloud-init.

Currently this only works for distros that use systemd as the init process. We will be expanding support for other distros
in the future and this document will be updated accordingly.

If systemd is not present on the system, dmesg is used to attempt to find an event that logs the beginning of the init
system. However, with this method only the first two timestamps are able to be found; dmesg does not monitor userspace
processes, so no cloud-init start timestamps are emitted – unlike when using systemd.

2.3.10 Failure states

Cloud-init has multiple modes of failure. This page describes these modes and how to gather information about failures.

Critical failure

Critical failures happens when cloud-init experiences a condition that it cannot safely handle. When this happens,
cloud-init may be unable to complete, and the instance is likely to be in an unknown broken state.

Cloud-init experiences critical failure when:

• there is a major problem with the cloud image that is running cloud-init

• there is a severe bug in cloud-init

When this happens, error messages will be visible in output of cloud-init status --long within the 'error'.

The same errors will also be located under the key nested under the module-level keys that store information related to
each stage of cloud-init: init-local, init, modules-config, modules-final.

Recoverable failure

In the case that cloud-init is able to complete yet something went wrong, cloud-init has experienced a “recoverable
failure”. When this happens, the service will return with exit code 2, and error messages will be visible in the output
of cloud-init status --long under the top level recoverable_errors and error keys.

To identify which stage an error came from, one can check under the module-level keys: init-local, init,
modules-config, modules-final for the same error keys.

See this more detailed explanation for to learn how to use cloud-init’s exported errors.

68 Chapter 2. Project and community

cloud-init, Release 24.1.3

Cloud-init error codes

Cloud-init’s status subcommand is useful for understanding which type of error cloud-init experienced while running.
The return code will be one of the following:

0 - success
1 - unrecoverable error
2 - recoverable error

If cloud-init status exits with exit code 1, cloud-init experienced critical failure and was unable to recover. In this
case, something is likely seriously wrong with the system, or cloud-init has experienced a serious bug. If you believe
that you have experienced a serious bug, please file a bug report.

If cloud-init exits with exit code 2, cloud-init was able to complete gracefully, however something went wrong and the
user should investigate.

See this more detailed explanation for more information on cloud-init’s status.

Where to next?

See our more detailed guide for a detailed guide to debugging cloud-init.

2.3.11 Exported errors

Cloud-init makes internal errors available to users for debugging. These errors map to logged errors and may be useful
for understanding what happens when cloud-init doesn’t do what you expect.

Aggregated errors

When a recoverable error occurs, the internal cloud-init state information is made visible under a top level aggregate
key recoverable_errors with errors sorted by error level:

$ cloud-init status --format json
{
"boot_status_code": "enabled-by-generator",
"config": {...},
"datasource": "",
"detail": "Cloud-init enabled by systemd cloud-init-generator",
"errors": [],
"extended_status": "degraded done",
"init": {...},
"last_update": "",
"recoverable_errors":
{
"WARNING": [

"Failed at merging in cloud config part from p-01: empty cloud config",
"No template found in /etc/cloud/templates for template source.deb822",
"No template found in /etc/cloud/templates for template sources.list",
"No template found, not rendering /etc/apt/soures.list.d/ubuntu.source"

]
},
"status": "done"

}

2.3. Explanation 69

cloud-init, Release 24.1.3

Reported recoverable error messages are grouped by the level at which they are logged. Complete list of levels in order
of increasing criticality:

WARNING
DEPRECATED
ERROR
CRITICAL

Each message has a single level. In cloud-init’s log files, the level at which logs are reported is configurable. These
messages are exported via the 'recoverable_errors' key regardless of which level of logging is configured.

Per-stage errors

The keys errors and recoverable_errors are also exported for each stage to allow identifying when recoverable
and non-recoverable errors occurred.

$ cloud-init status --format json
{
"boot_status_code": "enabled-by-generator",
"config":
{
"WARNING": [

"No template found in /etc/cloud/templates for template source.deb822",
"No template found in /etc/cloud/templates for template sources.list",
"No template found, not rendering /etc/apt/soures.list.d/ubuntu.source"

]
},
"datasource": "",
"detail": "Cloud-init enabled by systemd cloud-init-generator",
"errors": [],
"extended_status": "degraded done",
"init":
{
"WARNING": [

"Failed at merging in cloud config part from p-01: empty cloud config",
]

},
"last_update": "",
"recoverable_errors":
{
"WARNING": [
"Failed at merging in cloud config part from p-01: empty cloud config",
"No template found in /etc/cloud/templates for template source.deb822",
"No template found in /etc/cloud/templates for template sources.list",
"No template found, not rendering /etc/apt/soures.list.d/ubuntu.source"

]
},
"status": "done"

}

Note: Only completed cloud-init stages are listed in the output of cloud-init status --format json.

70 Chapter 2. Project and community

cloud-init, Release 24.1.3

The JSON representation of cloud-init boot stages (in run order) is:

"init-local"
"init"
"modules-config"
"modules-final"

Limitations of exported errors

• Exported recoverable errors represent logged messages, which are not guaranteed to be stable between releases.
The contents of the 'errors' and 'recoverable_errors' keys are not guaranteed to have stable output.

• Exported errors and recoverable errors may occur at different stages since users may reorder configuration mod-
ules to run at different stages via cloud.cfg.

Where to next?

See here for a detailed guide to debugging cloud-init.

2.3.12 Why did cloud-init status start returning exit code 2?

Cloud-init introduced a new error code in 23.4. This page describes the purpose of this change and gives some context
for why this change was made.

Background

Since cloud-init provides access to cloud instances, the paradigm for handling errors was “log errors, but proceed”.
Exiting on failure conditions doesn’t make sense when that may prevent one from accessing the system to debug it.

Since cloud-init’s behavior is heavily tied to specific cloud platforms, reproducing cloud-init bugs without exactly
reproducing a specific cloud environment is often impossible, and often requires guesswork. To make debugging
cloud-init possible without reproducing exactly, cloud-init logs are quite verbose.

Pain points

1) Invalid configurations were historically ignored.

2) Log verbosity is unfriendly to end users that may not know what to look for. Verbose logs means users often
ignore real errors.

3) Cloud-init’s reported status was only capable of telling the user whether cloud-init crashed. Cloud-init would
report a status of “done” in the following cases:

• a user’s configuration was invalid

• if the operating system or cloud environment experienced some error that prevented cloud-init from con-
figuring the instance

• if cloud-init internally experienced an error - all of these previously reported a status of “done”.

2.3. Explanation 71

cloud-init, Release 24.1.3

Efforts to improve cloud-init

Several changes have been introduced to cloud-init to address the pain points described above.

JSON schema

Cloud-init has defined a JSON schema which fully documents the user-data cloud-config. This JSON schema may be
used in several different ways:

Text editor integration

Thanks to yaml-language-server, cloud-init’s JSON schema may be used for YAML syntax checking, warnings when
invalid keys are used, and autocompletion. Several different text editors are capable of this. See this blog post on
configuring this for neovim, or for VScode one can install the extension and then a file named cloud-config.yaml
will automatically use cloud-init’s JSON schema.

Cloud-init schema subcommand

The cloud-init package includes a cloud-init subcommand, cloud-init schema which uses the schema to validate either
the configuration passed to the instance that you are running the command on, or to validate an arbitrary text file
containing a configuration.

Return codes

Cloud-init historically used two return codes from the cloud-init status subcommand: 0 to indicate success and 1
to indicate failure. These return codes lacked nuance. Return code 0 (success) included the in-between when something
went wrong, but cloud-init was able to finish.

Many users of cloud-init run cloud-init status --wait and expect that when complete, cloud-init has finished.
Since cloud-init is not guaranteed to succeed, users should also be check the return code of this command.

As of 23.4, errors that do not crash cloud-init will have an exit code of 2. Exit code of 1 means that cloud-init crashed,
and an exit code 0 more correctly means that cloud-init succeeded. Anyone that previously checked for exit code 0
should probably update their assumptions in one of the following two ways:

Users that wish to take advantage of cloud-init’s error reporting capabilities should check for exit code of 2 from
cloud-init status. An example of this:

from logging import getLogger
from json import loads
from subprocess import run
from sys import exit

logger = getLogger(__name__)
completed = run("cloud-init status --format json")
output = loads(completed.stdout)

if 2 == completed.return_code:
something bad might have happened - we should check it out
logger.warning("cloud-init experienced a recoverable error")
logger.warning("status: %s", output.get("extended_status"))

(continues on next page)

72 Chapter 2. Project and community

https://github.com/redhat-developer/yaml-language-server
https://phoenix-labs.xyz/blog/setup-neovim-cloud-init-completion/
https://phoenix-labs.xyz/blog/setup-neovim-cloud-init-completion/
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml

cloud-init, Release 24.1.3

(continued from previous page)

logger.warning("recoverable error: %s", output.get("recoverable_errors"))

elif 1 == completed.return_code:
cloud-init completely failed
logger.error("cloud-init crashed, all bets are off!")
exit(1)

Users that wish to use ignore cloud-init’s errors and check the return code in a backwards-compatible way should check
that the return code is not equal to 1. This will provide the same behavior before and after the changed exit code. See
an example of this:

from logging import getLogger
from subprocess import run
from sys import exit

logger = getLogger(__name__)
completed = run("cloud-init status --format json")

if 1 == completed.return_code:
cloud-init completely failed
logger.error("cloud-init crashed, all bets are off!")
exit(1)

cloud-init might have failed, but this code ignores that possibility
in preference of backwards compatibility

See our explanation of failure states for more information.

2.4 Reference

Our reference section contains support information for cloud-init. This includes details on the network requirements,
API definitions, support matrices and so on.

2.4.1 Module reference

Deprecation schedule and versions

Keys may be documented as deprecated, new, or changed. This allows cloud-init to evolve as requirements change,
and to adopt better practices without maintaining design decisions indefinitely.

Keys that have been marked as deprecated or changed may be removed or changed 5 years from the date of deprecation.
For example, a key that is deprecated in version 22.1 (which is the first release in 2022) is scheduled to be removed in
27.1 (first release in 2027). Use of deprecated keys may cause warnings in the logs. In the case that a key’s expected
value changes, the key will be marked changed with a date. A 5 year timeline may also be expected for changed keys.

2.4. Reference 73

cloud-init, Release 24.1.3

Ansible

Configure ansible for instance

Summary

This module provides ansible integration for augmenting cloud-init’s configuration of the local node.

This module installs ansible during boot and then uses ansible-pull to run the playbook repository at the remote
URL.

Internal name: cc_ansible

Module frequency: once-per-instance

Supported distros: all

Activate only on keys: ansible

Config schema

• ansible: (object)

– install_method: (distro/pip) The type of installation for ansible. It can be one of the following values:

∗ distro

∗ pip

– run_user: (string) User to run module commands as. If install_method: pip, the pip install runs as this
user as well.

– ansible_config: (string) Sets the ANSIBLE_CONFIG environment variable. If set, overrides default con-
fig.

– setup_controller: (object)

∗ repositories: (array of object)

· Each object in repositories list supports the following keys:

· path: (string)

· source: (string)

∗ run_ansible: (array)

· Each object in run_ansible list supports the following keys:

· playbook_name: (string)

· playbook_dir: (string)

· become_password_file: (string)

· connection_password_file: (string)

· list_hosts: (boolean)

· syntax_check: (boolean)

· timeout: (number)

· vault_id: (string)

74 Chapter 2. Project and community

cloud-init, Release 24.1.3

· vault_password_file: (string)

· background: (number)

· check: (boolean)

· diff: (boolean)

· module_path: (string)

· poll: (number)

· args: (string)

· extra_vars: (string)

· forks: (number)

· inventory: (string)

· scp_extra_args: (string)

· sftp_extra_args: (string)

· private_key: (string)

· connection: (string)

· module_name: (string)

· sleep: (string)

· tags: (string)

· skip_tags: (string)

– galaxy: (object)

∗ actions: (array of array)

– package_name: (string)

– pull: (object)

∗ accept_host_key: (boolean)

∗ clean: (boolean)

∗ full: (boolean)

∗ diff: (boolean)

∗ ssh_common_args: (string)

∗ scp_extra_args: (string)

∗ sftp_extra_args: (string)

∗ private_key: (string)

∗ checkout: (string)

∗ module_path: (string)

∗ timeout: (string)

∗ url: (string)

∗ connection: (string)

∗ vault_id: (string)

2.4. Reference 75

cloud-init, Release 24.1.3

∗ vault_password_file: (string)

∗ verify_commit: (boolean)

∗ inventory: (string)

∗ module_name: (string)

∗ sleep: (string)

∗ tags: (string)

∗ skip_tags: (string)

∗ playbook_name: (string)

Examples

--- Example1 ---

ansible:
package_name: ansible-core
install_method: distro
pull:
url: "https://github.com/holmanb/vmboot.git"
playbook_name: ubuntu.yml

--- Example2 ---

ansible:
package_name: ansible-core
install_method: pip
pull:
url: "https://github.com/holmanb/vmboot.git"
playbook_name: ubuntu.yml

APK Configure

Configure apk repositories file

Summary

This module handles configuration of the /etc/apk/repositories file.

Note: To ensure that apk configuration is valid yaml, any strings containing special characters, especially : should be
quoted.

Internal name: cc_apk_configure

Module frequency: once-per-instance

Supported distros: alpine

Activate only on keys: apk_repos

76 Chapter 2. Project and community

cloud-init, Release 24.1.3

Config schema

• apk_repos: (object)

– preserve_repositories: (boolean) By default, cloud-init will generate a new repositories file /etc/
apk/repositories based on any valid configuration settings specified within a apk_repos section of
cloud config. To disable this behavior and preserve the repositories file from the pristine image, set
preserve_repositories to true.

The preserve_repositories option overrides all other config keys that would alter /etc/
apk/repositories.

– alpine_repo: (null/object)

∗ base_url: (string) The base URL of an Alpine repository, or mirror, to download official packages
from. If not specified then it defaults to https://alpine.global.ssl.fastly.net/alpine

∗ community_enabled: (boolean) Whether to add the Community repo to the repositories file. By
default the Community repo is not included.

∗ testing_enabled: (boolean) Whether to add the Testing repo to the repositories file. By default the
Testing repo is not included. It is only recommended to use the Testing repo on a machine running the
Edge version of Alpine as packages installed from Testing may have dependencies that conflict with
those in non-Edge Main or Community repos.

∗ version: (string) The Alpine version to use (e.g. v3.12 or edge)

– local_repo_base_url: (string) The base URL of an Alpine repository containing unofficial packages

Examples

--- Example1 ---

Keep the existing /etc/apk/repositories file unaltered.
apk_repos:

preserve_repositories: true

--- Example2 ---

Create repositories file for Alpine v3.12 main and community
using default mirror site.
apk_repos:

alpine_repo:
community_enabled: true
version: 'v3.12'

--- Example3 ---

Create repositories file for Alpine Edge main, community, and
testing using a specified mirror site and also a local repo.
apk_repos:

alpine_repo:
base_url: 'https://some-alpine-mirror/alpine'
community_enabled: true
testing_enabled: true

(continues on next page)

2.4. Reference 77

cloud-init, Release 24.1.3

(continued from previous page)

version: 'edge'
local_repo_base_url: 'https://my-local-server/local-alpine'

Apt Configure

Configure apt for the user

Summary

This module handles both configuration of apt options and adding source lists. There are configuration options such as
apt_get_wrapper and apt_get_command that control how cloud-init invokes apt-get. These configuration options
are handled on a per-distro basis, so consult documentation for cloud-init’s distro support for instructions on using these
config options.

By default, cloud-init will generate default apt sources information in deb822 format at /etc/apt/sources.list.
d/<distro>.sources. When the value of sources_list does not appear to be deb822 format, or stable distribution
releases disable deb822 format, /etc/apt/sources.list will be written instead.

Note: To ensure that apt configuration is valid yaml, any strings containing special characters, especially : should be
quoted.

Note: For more information about apt configuration, see the Additional apt configuration example.

Internal name: cc_apt_configure

Module frequency: once-per-instance

Supported distros: ubuntu, debian

Config schema

• apt: (object)

– preserve_sources_list: (boolean) By default, cloud-init will generate a new sources list in /etc/apt/
sources.list.d based on any changes specified in cloud config. To disable this behavior and preserve
the sources list from the pristine image, set preserve_sources_list to true.

The preserve_sources_list option overrides all other config keys that would alter sources.list or
sources.list.d, except for additional sources to be added to sources.list.d.

– disable_suites: (array of string) Entries in the sources list can be disabled using disable_suites, which
takes a list of suites to be disabled. If the string $RELEASE is present in a suite in the disable_suites
list, it will be replaced with the release name. If a suite specified in disable_suites is not present in
sources.list it will be ignored. For convenience, several aliases are provided for`` disable_suites``:

∗ updates => $RELEASE-updates

∗ backports => $RELEASE-backports

∗ security => $RELEASE-security

∗ proposed => $RELEASE-proposed

78 Chapter 2. Project and community

cloud-init, Release 24.1.3

∗ release => $RELEASE.

When a suite is disabled using disable_suites, its entry in sources.list is not deleted; it is just
commented out.

– primary: (array of object) The primary and security archive mirrors can be specified using the primary
and security keys, respectively. Both the primary and security keys take a list of configs, allowing
mirrors to be specified on a per-architecture basis. Each config is a dictionary which must have an entry
for arches, specifying which architectures that config entry is for. The keyword default applies to any
architecture not explicitly listed. The mirror url can be specified with the uri key, or a list of mirrors to
check can be provided in order, with the first mirror that can be resolved being selected. This allows the
same configuration to be used in different environment, with different hosts used for a local APT mirror. If
no mirror is provided by uri or search, search_dns may be used to search for dns names in the format
<distro>-mirror in each of the following:

∗ fqdn of this host per cloud metadata,

∗ localdomain,

∗ domains listed in /etc/resolv.conf.

If there is a dns entry for <distro>-mirror, then it is assumed that there is a distro mirror at http://
<distro>-mirror.<domain>/<distro>. If the primary key is defined, but not the security key, then
then configuration for primary is also used for security. If search_dns is used for the security key,
the search pattern will be <distro>-security-mirror.

Each mirror may also specify a key to import via any of the following optional keys:

∗ keyid: a key to import via shortid or fingerprint.

∗ key: a raw PGP key.

∗ keyserver: alternate keyserver to pull keyid key from.

If no mirrors are specified, or all lookups fail, then default mirrors defined in the datasource are used. If
none are present in the datasource either the following defaults are used:

∗ primary => http://archive.ubuntu.com/ubuntu.

∗ security => http://security.ubuntu.com/ubuntu

∗ Each object in primary list supports the following keys:

∗ arches: (array of string)

∗ uri: (string)

∗ search: (array of string)

∗ search_dns: (boolean)

∗ keyid: (string)

∗ key: (string)

∗ keyserver: (string)

– security: (array of object) Please refer to the primary config documentation

∗ Each object in security list supports the following keys:

∗ arches: (array of string)

∗ uri: (string)

∗ search: (array of string)

2.4. Reference 79

cloud-init, Release 24.1.3

∗ search_dns: (boolean)

∗ keyid: (string)

∗ key: (string)

∗ keyserver: (string)

– add_apt_repo_match: (string) All source entries in apt-sources that match regex in
add_apt_repo_match will be added to the system using add-apt-repository. If
add_apt_repo_match is not specified, it defaults to ^[\w-]+:\w

– debconf_selections: (object) Debconf additional configurations can be specified as a dictionary under the
debconf_selections config key, with each key in the dict representing a different set of configurations.
The value of each key must be a string containing all the debconf configurations that must be applied. We
will bundle all of the values and pass them to debconf-set-selections. Therefore, each value line must
be a valid entry for debconf-set-selections, meaning that they must possess for distinct fields:

pkgname question type answer

Where:

∗ pkgname is the name of the package.

∗ question the name of the questions.

∗ type is the type of question.

∗ answer is the value used to answer the question.

For example: ippackage ippackage/ip string 127.0.01

∗ ^.+$: (string)

– sources_list: (string) Specifies a custom template for rendering sources.list . If no sources_list
template is given, cloud-init will use sane default. Within this template, the following strings will be re-
placed with the appropriate values:

∗ $MIRROR

∗ $RELEASE

∗ $PRIMARY

∗ $SECURITY

∗ $KEY_FILE

– conf: (string) Specify configuration for apt, such as proxy configuration. This configuration is specified as
a string. For multi-line APT configuration, make sure to follow YAML syntax.

– https_proxy: (string) More convenient way to specify https APT proxy. https proxy url is specified in the
format https://[[user][:pass]@]host[:port]/.

– http_proxy: (string) More convenient way to specify http APT proxy. http proxy url is specified in the
format http://[[user][:pass]@]host[:port]/.

– proxy: (string) Alias for defining a http APT proxy.

– ftp_proxy: (string) More convenient way to specify ftp APT proxy. ftp proxy url is specified in the format
ftp://[[user][:pass]@]host[:port]/.

– sources: (object) Source list entries can be specified as a dictionary under the sources config key, with
each key in the dict representing a different source file. The key of each source entry will be used as an id
that can be referenced in other config entries, as well as the filename for the source’s configuration under
/etc/apt/sources.list.d. If the name does not end with .list, it will be appended. If there is no

80 Chapter 2. Project and community

cloud-init, Release 24.1.3

configuration for a key in sources, no file will be written, but the key may still be referred to as an id in
other sources entries.

Each entry under sources is a dictionary which may contain any of the following optional keys: - source:
a sources.list entry (some variable replacements apply). - keyid: a key to import via shortid or fingerprint.
- key: a raw PGP key. - keyserver: alternate keyserver to pull keyid key from. - filename: specify the
name of the list file. - append: If true, append to sources file, otherwise overwrite it. Default: true.

The source key supports variable replacements for the following strings:

∗ $MIRROR

∗ $PRIMARY

∗ $SECURITY

∗ $RELEASE

∗ $KEY_FILE

∗ ^.+$: (object)

· source: (string)

· keyid: (string)

· key: (string)

· keyserver: (string)

· filename: (string)

· append: (boolean)

Examples

--- Example1 ---

apt:
preserve_sources_list: false
disable_suites:

- $RELEASE-updates
- backports
- $RELEASE
- mysuite

primary:
- arches:

- amd64
- i386
- default

uri: 'http://us.archive.ubuntu.com/ubuntu'
search:
- 'http://cool.but-sometimes-unreachable.com/ubuntu'
- 'http://us.archive.ubuntu.com/ubuntu'

search_dns: false
- arches:

- s390x
- arm64

uri: 'http://archive-to-use-for-arm64.example.com/ubuntu'
(continues on next page)

2.4. Reference 81

cloud-init, Release 24.1.3

(continued from previous page)

security:
- arches:

- default
search_dns: true

sources_list: |
deb $MIRROR $RELEASE main restricted
deb-src $MIRROR $RELEASE main restricted
deb $PRIMARY $RELEASE universe restricted
deb $SECURITY $RELEASE-security multiverse

debconf_selections:
set1: the-package the-package/some-flag boolean true

conf: |
APT {

Get {
Assume-Yes 'true';
Fix-Broken 'true';

}
}

proxy: 'http://[[user][:pass]@]host[:port]/'
http_proxy: 'http://[[user][:pass]@]host[:port]/'
ftp_proxy: 'ftp://[[user][:pass]@]host[:port]/'
https_proxy: 'https://[[user][:pass]@]host[:port]/'
sources:

source1:
keyid: 'keyid'
keyserver: 'keyserverurl'
source: 'deb [signed-by=$KEY_FILE] http://<url>/ bionic main'

source2:
source: 'ppa:<ppa-name>'

source3:
source: 'deb $MIRROR $RELEASE multiverse'
key: |

------BEGIN PGP PUBLIC KEY BLOCK-------
<key data>
------END PGP PUBLIC KEY BLOCK-------

source4:
source: 'deb $MIRROR $RELEASE multiverse'
append: false
key: |

------BEGIN PGP PUBLIC KEY BLOCK-------
<key data>
------END PGP PUBLIC KEY BLOCK-------

--- Example2 ---

cloud-init version 23.4 will generate a deb822 formatted sources
file at /etc/apt/sources.list.d/<distro>.sources instead of
/etc/apt/sources.list when `sources_list` content is deb822
format.
apt:

sources_list: |
Types: deb

(continues on next page)

82 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

URIs: http://archive.ubuntu.com/ubuntu/
Suites: $RELEASE
Components: main

Apt Pipelining

Configure apt pipelining

Summary

This module configures apt’s Acquite::http::Pipeline-Depth option, which controls how apt handles HTTP
pipelining. It may be useful for pipelining to be disabled, because some web servers, such as S3 do not pipeline
properly (LP: #948461).

Value configuration options for this module are:

• os: (Default) use distro default

• false disable pipelining altogether

• <number>: Manually specify pipeline depth. This is not recommended.

Internal name: cc_apt_pipelining

Module frequency: once-per-instance

Supported distros: ubuntu, debian

Activate only on keys: apt_pipelining

Config schema

• apt_pipelining: (integer/boolean/string)

Examples

--- Example1 ---

apt_pipelining: false
--- Example2 ---

apt_pipelining: os
--- Example3 ---

apt_pipelining: 3

2.4. Reference 83

cloud-init, Release 24.1.3

Bootcmd

Run arbitrary commands early in the boot process

Summary

This module runs arbitrary commands very early in the boot process, only slightly after a boothook would run. This is
very similar to a boothook, but more user friendly. The environment variable INSTANCE_ID will be set to the current
instance id for all run commands. Commands can be specified either as lists or strings. For invocation details, see
runcmd.

Note: bootcmd should only be used for things that could not be done later in the boot process.

Note: when writing files, do not use /tmp dir as it races with systemd-tmpfiles-clean LP: #1707222. Use /run/somedir
instead.

Internal name: cc_bootcmd

Module frequency: always

Supported distros: all

Activate only on keys: bootcmd

Config schema

• bootcmd: (array of (array of string/string))

Examples

--- Example1 ---

bootcmd:
- echo 192.168.1.130 us.archive.ubuntu.com > /etc/hosts
- [cloud-init-per, once, mymkfs, mkfs, /dev/vdb]

Byobu

Enable/disable byobu system wide and for default user

84 Chapter 2. Project and community

cloud-init, Release 24.1.3

Summary

This module controls whether byobu is enabled or disabled system wide and for the default system user. If byobu is to
be enabled, this module will ensure it is installed. Likewise, if it is to be disabled, it will be removed if installed.

Valid configuration options for this module are:

• enable-system: enable byobu system wide

• enable-user: enable byobu for the default user

• disable-system: disable byobu system wide

• disable-user: disable byobu for the default user

• enable: enable byobu both system wide and for default user

• disable: disable byobu for all users

• user: alias for enable-user

• system: alias for enable-system

Internal name: cc_byobu

Module frequency: once-per-instance

Supported distros: ubuntu, debian

Config schema

• byobu_by_default: (enable-system/enable-user/disable-system/disable-user/enable/disable/user/system)

Examples

--- Example1 ---

byobu_by_default: enable-user
--- Example2 ---

byobu_by_default: disable-system

CA Certificates

Add ca certificates

Summary

This module adds CA certificates to the system’s CA store and updates any related files using the appropriate OS-
specific utility. The default CA certificates can be disabled/deleted from use by the system with the configuration
option remove_defaults.

Note: certificates must be specified using valid yaml. in order to specify a multiline certificate, the yaml multiline list
syntax must be used

2.4. Reference 85

cloud-init, Release 24.1.3

Note: Alpine Linux requires the ca-certificates package to be installed in order to provide the
update-ca-certificates command.

Internal name: cc_ca_certs

Module frequency: once-per-instance

Supported distros: alpine, debian, fedora, rhel, opensuse, opensuse-microos, opensuse-tumbleweed, opensuse-leap,
sle_hpc, sle-micro, sles, ubuntu, photon

Activate only on keys: ca_certs, ca-certs

Config schema

• ca_certs: (object)

– remove-defaults: (boolean)

Deprecated in version 22.3. Use ``remove_defaults`` instead.

– remove_defaults: (boolean) Remove default CA certificates if true. Default: false

– trusted: (array of string) List of trusted CA certificates to add.

• ca-certs: (object)

Deprecated in version 22.3. Use ``ca_certs`` instead.

– remove-defaults: (boolean)

Deprecated in version 22.3. Use ``remove_defaults`` instead.

– remove_defaults: (boolean) Remove default CA certificates if true. Default: false

– trusted: (array of string) List of trusted CA certificates to add.

Examples

--- Example1 ---

ca_certs:
remove_defaults: true
trusted:
- single_line_cert
- |
-----BEGIN CERTIFICATE-----
YOUR-ORGS-TRUSTED-CA-CERT-HERE
-----END CERTIFICATE-----

86 Chapter 2. Project and community

cloud-init, Release 24.1.3

Chef

module that configures, starts and installs chef

Summary

This module enables chef to be installed (from packages, gems, or from omnibus). Before this occurs, chef configuration
is written to disk (validation.pem, client.pem, firstboot.json, client.rb), and required directories are created (/etc/chef
and /var/log/chef and so-on). If configured, chef will be installed and started in either daemon or non-daemon mode.
If run in non-daemon mode, post run actions are executed to do finishing activities such as removing validation.pem.

Internal name: cc_chef

Module frequency: always

Supported distros: all

Activate only on keys: chef

Config schema

• chef: (object)

– directories: (array of string) Create the necessary directories for chef to run. By default, it creates the
following directories:

∗ /etc/chef

∗ /var/log/chef

∗ /var/lib/chef

∗ /var/cache/chef

∗ /var/backups/chef

∗ /var/run/chef

– validation_cert: (string) Optional string to be written to file validation_key. Special value system means
set use existing file.

– validation_key: (string) Optional path for validation_cert. default to /etc/chef/validation.pem

– firstboot_path: (string) Path to write run_list and initial_attributes keys that should also be present in this
configuration, defaults to /etc/chef/firstboot.json

– exec: (boolean) Set true if we should run or not run chef (defaults to false, unless a gem installed is requested
where this will then default to true).

– client_key: (string) Optional path for client_cert. Default: /etc/chef/client.pem.

– encrypted_data_bag_secret: (string) Specifies the location of the secret key used by chef to encrypt data
items. By default, this path is set to null, meaning that chef will have to look at the path /etc/chef/
encrypted_data_bag_secret for it.

– environment: (string) Specifies which environment chef will use. By default, it will use the _default
configuration.

– file_backup_path: (string) Specifies the location in which backup files are stored. By default, it uses the
/var/backups/chef location.

2.4. Reference 87

cloud-init, Release 24.1.3

– file_cache_path: (string) Specifies the location in which chef cache files will be saved. By default, it uses
the /var/cache/chef location.

– json_attribs: (string) Specifies the location in which some chef json data is stored. By default, it uses the
/etc/chef/firstboot.json location.

– log_level: (string) Defines the level of logging to be stored in the log file. By default this value is set to
:info.

– log_location: (string) Specifies the location of the chef log file. By default, the location is specified at
/var/log/chef/client.log.

– node_name: (string) The name of the node to run. By default, we will use th instance id as the node name.

– omnibus_url: (string) Omnibus URL if chef should be installed through Omnibus. By default, it uses the
https://www.chef.io/chef/install.sh.

– omnibus_url_retries: (integer) The number of retries that will be attempted to reach the Omnibus URL.
Default: 5.

– omnibus_version: (string) Optional version string to require for omnibus install.

– pid_file: (string) The location in which a process identification number (pid) is saved. By default, it saves
in the /var/run/chef/client.pid location.

– server_url: (string) The URL for the chef server

– show_time: (boolean) Show time in chef logs

– ssl_verify_mode: (string) Set the verify mode for HTTPS requests. We can have two possible values for
this parameter:

∗ :verify_none: No validation of SSL certificates.

∗ :verify_peer: Validate all SSL certificates.

By default, the parameter is set as :verify_none.

– validation_name: (string) The name of the chef-validator key that Chef Infra Client uses to access the
Chef Infra Server during the initial Chef Infra Client run.

– force_install: (boolean) If set to true, forces chef installation, even if it is already installed.

– initial_attributes: (object of string) Specify a list of initial attributes used by the cookbooks.

– install_type: (packages/gems/omnibus) The type of installation for chef. It can be one of the following
values:

∗ packages

∗ gems

∗ omnibus

– run_list: (array of string) A run list for a first boot json.

– chef_license: (string) string that indicates if user accepts or not license related to some of chef products

88 Chapter 2. Project and community

cloud-init, Release 24.1.3

Examples

--- Example1 ---

chef:
directories:
- /etc/chef
- /var/log/chef

validation_cert: system
install_type: omnibus
initial_attributes:
apache:
prefork:
maxclients: 100

keepalive: off
run_list:
- recipe[apache2]
- role[db]

encrypted_data_bag_secret: /etc/chef/encrypted_data_bag_secret
environment: _default
log_level: :auto
omnibus_url_retries: 2
server_url: https://chef.yourorg.com:4000
ssl_verify_mode: :verify_peer
validation_name: yourorg-validator

Disable EC2 Metadata

Disable AWS EC2 Metadata

Summary

This module can disable the ec2 datasource by rejecting the route to 169.254.169.254, the usual route to the data-
source. This module is disabled by default.

Internal name: cc_disable_ec2_metadata

Module frequency: always

Supported distros: all

Activate only on keys: disable_ec2_metadata

2.4. Reference 89

cloud-init, Release 24.1.3

Config schema

• disable_ec2_metadata: (boolean) Set true to disable IPv4 routes to EC2 metadata. Default: false

Examples

--- Example1 ---

disable_ec2_metadata: true

Disk Setup

Configure partitions and filesystems

Summary

This module is able to configure simple partition tables and filesystems.

Note: for more detail about configuration options for disk setup, see the disk setup example

Note: if a swap partition is being created via disk_setup then a fs_entry entry is also needed in order for mkswap
to be run, otherwise when swap activation is later attempted it will fail.

For convenience, aliases can be specified for disks using the device_aliases config key, which takes a dictionary of
alias: path mappings. There are automatic aliases for swap and ephemeral<X>, where swap will always refer to the
active swap partition and ephemeral<X> will refer to the block device of the ephemeral image.

Disk partitioning is done using the disk_setup directive. This config directive accepts a dictionary where each key
is either a path to a block device or an alias specified in device_aliases, and each value is the configuration options
for the device. File system configuration is done using the fs_setup directive. This config directive accepts a list of
filesystem configs.

Internal name: cc_disk_setup

Module frequency: once-per-instance

Supported distros: all

Activate only on keys: disk_setup, fs_setup

Config schema

• device_aliases: (object)

– <alias_name>: (string) Path to disk to be aliased by this name.

• disk_setup: (object)

– <alias name/path>: (object)

∗ table_type: (mbr/gpt) Specifies the partition table type, either mbr or gpt. Default: mbr.

90 Chapter 2. Project and community

cloud-init, Release 24.1.3

∗ layout: (remove/boolean/array) If set to true, a single partition using all the space on the device will
be created. If set to false, no partitions will be created. If set to remove, any existing partition table
will be purged. Partitions can be specified by providing a list to layout, where each entry in the list
is either a size or a list containing a size and the numerical value for a partition type. The size for
partitions is specified in percentage of disk space, not in bytes (e.g. a size of 33 would take up 1/3 of
the disk space). The partition type defaults to ‘83’ (Linux partition), for other types of partition, such
as Linux swap, the type must be passed as part of a list along with the size. Default: false.

∗ overwrite: (boolean) Controls whether this module tries to be safe about writing partition tables or
not. If overwrite: false is set, the device will be checked for a partition table and for a file system
and if either is found, the operation will be skipped. If overwrite: true is set, no checks will be
performed. Using overwrite: true is dangerous and can lead to data loss, so double check that
the correct device has been specified if using this option. Default: false

• fs_setup: (array of object)

– Each object in fs_setup list supports the following keys:

– label: (string) Label for the filesystem.

– filesystem: (string) Filesystem type to create. E.g., ext4 or btrfs

– device: (string) Specified either as a path or as an alias in the format <alias name>.<y> where <y>
denotes the partition number on the device. If specifying device using the <alias name>.<partition
number> format, the value of partition will be overwritten.

– partition: (string/integer/auto/any/none) The partition can be specified by setting partition to the
desired partition number. The partition option may also be set to auto, in which this module will
search for the existence of a filesystem matching the label, filesystem and device of the fs_setup
entry and will skip creating the filesystem if one is found. The partition option may also be set to any, in
which case any filesystem that matches filesystem and device will cause this module to skip filesystem
creation for the fs_setup entry, regardless of label matching or not. To write a filesystem directly to
a device, use partition: none. partition: none will always write the filesystem, even when the
label and filesystem are matched, and overwrite is false.

– overwrite: (boolean) If true, overwrite any existing filesystem. Using overwrite: true for filesys-
tems is dangerous and can lead to data loss, so double check the entry in fs_setup. Default: false

– replace_fs: (string) Ignored unless partition is auto or any. Default false.

– extra_opts: (string/array of string) Optional options to pass to the filesystem creation command. Ignored
if you using cmd directly.

– cmd: (string/array of string) Optional command to run to create the filesystem. Can include string sub-
stitutions of the other fs_setup config keys. This is only necessary if you need to override the default
command.

Examples

--- Example1 ---

device_aliases:
my_alias: /dev/sdb
swap_disk: /dev/sdc

disk_setup:
my_alias:
table_type: gpt
layout: [50, 50]

(continues on next page)

2.4. Reference 91

cloud-init, Release 24.1.3

(continued from previous page)

overwrite: true
swap_disk:
table_type: gpt
layout: [[100, 82]]
overwrite: true

/dev/sdd:
table_type: mbr
layout: true
overwrite: true

fs_setup:
- label: fs1
filesystem: ext4
device: my_alias.1
cmd: mkfs -t %(filesystem)s -L %(label)s %(device)s

- label: fs2
device: my_alias.2
filesystem: ext4

- label: swap
device: swap_disk.1
filesystem: swap

- label: fs3
device: /dev/sdd1
filesystem: ext4

mounts:
- ["my_alias.1", "/mnt1"]
- ["my_alias.2", "/mnt2"]
- ["swap_disk.1", "none", "swap", "sw", "0", "0"]
- ["/dev/sdd1", "/mnt3"]

Fan

Configure ubuntu fan networking

Summary

This module installs, configures and starts the ubuntu fan network system. For more information about Ubuntu Fan,
see: https://wiki.ubuntu.com/FanNetworking.

If cloud-init sees a fan entry in cloud-config it will:

• write config_path with the contents of the config key

• install the package ubuntu-fan if it is not installed

• ensure the service is started (or restarted if was previously running)

Additionally, the ubuntu-fan package will be automatically installed if not present.

Internal name: cc_fan

Module frequency: once-per-instance

Supported distros: ubuntu

Activate only on keys: fan

92 Chapter 2. Project and community

cloud-init, Release 24.1.3

Config schema

• fan: (object)

– config: (string) The fan configuration to use as a single multi-line string

– config_path: (string) The path to write the fan configuration to. Default: /etc/network/fan

Examples

--- Example1 ---

fan:
config: |
fan 240
10.0.0.0/8 eth0/16 dhcp
10.0.0.0/8 eth1/16 dhcp off
fan 241
241.0.0.0/8 eth0/16 dhcp

config_path: /etc/network/fan

Final Message

Output final message when cloud-init has finished

Summary

This module configures the final message that cloud-init writes. The message is specified as a jinja template with the
following variables set:

• version: cloud-init version

• timestamp: time at cloud-init finish

• datasource: cloud-init data source

• uptime: system uptime

This message is written to the cloud-init log (usually /var/log/cloud-init.log) as well as stderr (which usually redirects
to /var/log/cloud-init-output.log).

Upon exit, this module writes the system uptime, timestamp, and cloud-init version to /var/lib/cloud/instance/
boot-finished independent of any user data specified for this module.

Internal name: cc_final_message

Module frequency: always

Supported distros: all

2.4. Reference 93

cloud-init, Release 24.1.3

Config schema

• final_message: (string) The message to display at the end of the run

Examples

--- Example1 ---

final_message: |
cloud-init has finished
version: $version
timestamp: $timestamp
datasource: $datasource
uptime: $uptime

Growpart

Grow partitions

Summary

Growpart resizes partitions to fill the available disk space. This is useful for cloud instances with a larger amount of
disk space available than the pristine image uses, as it allows the instance to automatically make use of the extra space.
Note that this only works if the partition to be resized is the last one on a disk with classic partitioning scheme (MBR,
BSD, GPT). LVM, Btrfs and ZFS have no such restrictions.

The devices on which to run growpart are specified as a list under the devices key.

There is some functionality overlap between this module and the growroot functionality of
cloud-initramfs-tools. However, there are some situations where one tool is able to function and the
other is not. The default configuration for both should work for most cloud instances. To explicitly prevent
cloud-initramfs-tools from running growroot, the file /etc/growroot-disabled can be created. By default,
both growroot and cc_growpart will check for the existence of this file and will not run if it is present. However,
this file can be ignored for cc_growpart by setting ignore_growroot_disabled to true. For more information
on cloud-initramfs-tools see: https://launchpad.net/cloud-initramfs-tools

On FreeBSD, there is also the growfs service, which has a lot of overlap with cc_growpart and cc_resizefs, but
only works on the root partition. In that configuration, we use it, otherwise, we fall back to gpart.

Note however, that growfs may insert a swap partition, if none is present, unless instructed not to via
growfs_swap_size=0 in either kenv(1), or rc.conf(5).

Growpart is enabled by default on the root partition. The default config for growpart is:

growpart:
mode: auto
devices: ["/"]
ignore_growroot_disabled: false

Internal name: cc_growpart

Module frequency: always

Supported distros: all

94 Chapter 2. Project and community

https://launchpad.net/cloud-initramfs-tools

cloud-init, Release 24.1.3

Config schema

• growpart: (object)

– mode: (auto/growpart/gpart/off/false) The utility to use for resizing. Default: auto

Possible options:

∗ auto - Use any available utility

∗ growpart - Use growpart utility

∗ gpart - Use BSD gpart utility

∗ off - Take no action.

Changed in version 22.3. Specifying a boolean ``false`` value for ``mode`` is deprecated. Use ``off`` instead.

– devices: (array of string) The devices to resize. Each entry can either be the path to the device’s mountpoint
in the filesystem or a path to the block device in ‘/dev’. Default: [/]

– ignore_growroot_disabled: (boolean) If true, ignore the presence of /etc/growroot-disabled. If
false and the file exists, then don’t resize. Default: false

Examples

--- Example1 ---

growpart:
mode: auto
devices: ["/"]
ignore_growroot_disabled: false

--- Example2 ---

growpart:
mode: growpart
devices:
- "/"
- "/dev/vdb1"

ignore_growroot_disabled: true

Grub Dpkg

Configure grub debconf installation device

2.4. Reference 95

cloud-init, Release 24.1.3

Summary

Configure which device is used as the target for grub installation. This module can be enabled/disabled using the
enabled config key in the grub_dpkg config dict. This module automatically selects a disk using grub-probe if no
installation device is specified.

The value which is placed into the debconf database is in the format which the grub postinstall script expects. Normally,
this is a /dev/disk/by-id/ value, but we do fallback to the plain disk name if a by-id name is not present.

If this module is executed inside a container, then the debconf database is seeded with empty values, and in-
stall_devices_empty is set to true.

Internal name: cc_grub_dpkg

Module frequency: once-per-instance

Supported distros: ubuntu, debian

Config schema

• grub_dpkg: (object)

– enabled: (boolean) Whether to configure which device is used as the target for grub installation. Default:
true

– grub-pc/install_devices: (string) Device to use as target for grub installation. If unspecified, grub-probe
of /boot will be used to find the device

– grub-pc/install_devices_empty: (boolean/string) Sets values for grub-pc/install_devices_empty.
If unspecified, will be set to true if grub-pc/install_devices is empty, otherwise false.

Changed in version 22.3. Use a boolean value instead.

– grub-efi/install_devices: (string) Partition to use as target for grub installation. If unspecified,
grub-probe of /boot/efi will be used to find the partition

• grub-dpkg: (object) An alias for grub_dpkg

Deprecated in version 22.2. Use ``grub_dpkg`` instead.

Examples

--- Example1 ---

grub_dpkg:
enabled: true
BIOS mode (install_devices needs disk)
grub-pc/install_devices: /dev/sda
grub-pc/install_devices_empty: false
EFI mode (install_devices needs partition)
grub-efi/install_devices: /dev/sda

96 Chapter 2. Project and community

cloud-init, Release 24.1.3

Install Hotplug

Install hotplug udev rules if supported and enabled

Summary

This module will install the udev rules to enable hotplug if supported by the datasource and enabled in the userdata.
The udev rules will be installed as /etc/udev/rules.d/90-cloud-init-hook-hotplug.rules.

When hotplug is enabled, newly added network devices will be added to the system by cloud-init. After udev detects
the event, cloud-init will refresh the instance metadata from the datasource, detect the device in the updated metadata,
then apply the updated network configuration.

Currently supported datasources: Openstack, EC2

Internal name: cc_install_hotplug

Module frequency: once-per-instance

Supported distros: all

Config schema

• updates: (object)

– network: (object)

∗ when: (array of string)

Examples

--- Example1 ---

Enable hotplug of network devices
updates:
network:
when: ["hotplug"]

--- Example2 ---

Enable network hotplug alongside boot event
updates:
network:
when: ["boot", "hotplug"]

2.4. Reference 97

cloud-init, Release 24.1.3

Keyboard

Set keyboard layout

Summary

Handle keyboard configuration.

Internal name: cc_keyboard

Module frequency: once-per-instance

Supported distros: alpine, arch, debian, ubuntu, almalinux, amazon, azurelinux, centos, cloudlinux, eurolinux, fedora,
mariner, miraclelinux, openmandriva, photon, rhel, rocky, virtuozzo, opensuse, opensuse-leap, opensuse-microos,
opensuse-tumbleweed, sle_hpc, sle-micro, sles, suse

Activate only on keys: keyboard

Config schema

• keyboard: (object)

– layout: (string) Required. Keyboard layout. Corresponds to XKBLAYOUT.

– model: (string) Optional. Keyboard model. Corresponds to XKBMODEL. Default: pc105.

– variant: (string) Required for Alpine Linux, optional otherwise. Keyboard variant. Corresponds to XKB-
VARIANT.

– options: (string) Optional. Keyboard options. Corresponds to XKBOPTIONS.

Examples

--- Example1 ---

Set keyboard layout to "us"
keyboard:
layout: us

--- Example2 ---

Set specific keyboard layout, model, variant, options
keyboard:
layout: de
model: pc105
variant: nodeadkeys
options: compose:rwin

--- Example3 ---

For Alpine Linux set specific keyboard layout and variant,
as used by setup-keymap. Model and options are ignored.
keyboard:
layout: gb
variant: gb-extd

98 Chapter 2. Project and community

cloud-init, Release 24.1.3

Keys to Console

Control which SSH host keys may be written to console

Summary

For security reasons it may be desirable not to write SSH host keys and their fingerprints to the console. To avoid either
being written to the console the emit_keys_to_console config key under the main ssh config key can be used. To
avoid the fingerprint of types of SSH host keys being written to console the ssh_fp_console_blacklist config key
can be used. By default, all types of keys will have their fingerprints written to console. To avoid host keys of a key
type being written to console the``ssh_key_console_blacklist`` config key can be used. By default all supported host
keys are written to console.

Internal name: cc_keys_to_console

Module frequency: once-per-instance

Supported distros: all

Config schema

• ssh: (object)

– emit_keys_to_console: (boolean) Set false to avoid printing SSH keys to system console. Default: true.

• ssh_key_console_blacklist: (array of string) Avoid printing matching SSH key types to the system console.

• ssh_fp_console_blacklist: (array of string) Avoid printing matching SSH fingerprints to the system console.

Examples

--- Example1 ---

Do not print any SSH keys to system console
ssh:
emit_keys_to_console: false

--- Example2 ---

Do not print certain ssh key types to console
ssh_key_console_blacklist: [rsa]

--- Example3 ---

Do not print specific ssh key fingerprints to console
ssh_fp_console_blacklist:
- E25451E0221B5773DEBFF178ECDACB160995AA89
- FE76292D55E8B28EE6DB2B34B2D8A784F8C0AAB0

2.4. Reference 99

cloud-init, Release 24.1.3

Landscape

Install and configure landscape client

Summary

This module installs and configures landscape-client. The landscape client will only be installed if the key
landscape is present in config. Landscape client configuration is given under the client key under the main
landscape config key. The config parameters are not interpreted by cloud-init, but rather are converted into a Con-
figObj formatted file and written out to the [client] section in /etc/landscape/client.conf.

The following default client config is provided, but can be overridden:

landscape:
client:

log_level: "info"
url: "https://landscape.canonical.com/message-system"
ping_url: "http://landscape.canoncial.com/ping"
data_path: "/var/lib/landscape/client"

Note: see landscape documentation for client config keys

Note: if tags is defined, its contents should be a string delimited with , rather than a list

Internal name: cc_landscape

Module frequency: once-per-instance

Supported distros: ubuntu

Activate only on keys: landscape

Config schema

• landscape: (object)

– client: (object)

∗ url: (string) The Landscape server URL to connect to. Default: https://landscape.canonical.
com/message-system.

∗ ping_url: (string) The URL to perform lightweight exchange initiation with. Default: https://
landscape.canonical.com/ping.

∗ data_path: (string) The directory to store data files in. Default: /var/lib/land-scape/client/.

∗ log_level: (debug/info/warning/error/critical) The log level for the client. Default: info.

∗ computer_title: (string) The title of this computer.

∗ account_name: (string) The account this computer belongs to.

∗ registration_key: (string) The account-wide key used for registering clients.

∗ tags: (string) Comma separated list of tag names to be sent to the server.

100 Chapter 2. Project and community

cloud-init, Release 24.1.3

∗ http_proxy: (string) The URL of the HTTP proxy, if one is needed.

∗ https_proxy: (string) The URL of the HTTPS proxy, if one is needed.

Examples

--- Example1 ---

To discover additional supported client keys, run
man landscape-config.
landscape:

client:
url: "https://landscape.canonical.com/message-system"
ping_url: "http://landscape.canonical.com/ping"
data_path: "/var/lib/landscape/client"
http_proxy: "http://my.proxy.com/foobar"
https_proxy: "https://my.proxy.com/foobar"
tags: "server,cloud"
computer_title: "footitle"
registration_key: "fookey"
account_name: "fooaccount"

--- Example2 ---

Minimum viable config requires account_name and computer_title
landscape:

client:
computer_title: kiosk 1
account_name: Joe's Biz

--- Example3 ---

To install landscape-client from a PPA, specify apt.sources
apt:

sources:
trunk-testing-ppa:
source: ppa:landscape/self-hosted-beta

landscape:
client:
account_name: myaccount
computer_title: himom

2.4. Reference 101

cloud-init, Release 24.1.3

Locale

Set system locale

Summary

Configure the system locale and apply it system wide. By default use the locale specified by the datasource.

Internal name: cc_locale

Module frequency: once-per-instance

Supported distros: all

Config schema

• locale: (string) The locale to set as the system’s locale (e.g. ar_PS)

• locale_configfile: (string) The file in which to write the locale configuration (defaults to the distro’s default
location)

Examples

--- Example1 ---

Set the locale to ar_AE
locale: ar_AE

--- Example2 ---

Set the locale to fr_CA in /etc/alternate_path/locale
locale: fr_CA
locale_configfile: /etc/alternate_path/locale

LXD

Configure LXD with lxd init and optionally lxd-bridge

Summary

This module configures lxd with user specified options using lxd init. If lxd is not present on the system but lxd
configuration is provided, then lxd will be installed. If the selected storage backend userspace utility is not installed, it
will be installed. If network bridge configuration is provided, then lxd-bridge will be configured accordingly.

Internal name: cc_lxd

Module frequency: once-per-instance

Supported distros: ubuntu

Activate only on keys: lxd

102 Chapter 2. Project and community

cloud-init, Release 24.1.3

Config schema

• lxd: (object)

– init: (object) LXD init configuration values to provide to lxd init –auto command. Can not be combined
with lxd.preseed.

∗ network_address: (string) IP address for LXD to listen on

∗ network_port: (integer) Network port to bind LXD to.

∗ storage_backend: (zfs/dir/lvm/btrfs) Storage backend to use. Default: dir.

∗ storage_create_device: (string) Setup device based storage using DEVICE

∗ storage_create_loop: (integer) Setup loop based storage with SIZE in GB

∗ storage_pool: (string) Name of storage pool to use or create

∗ trust_password: (string) The password required to add new clients

– bridge: (object) LXD bridge configuration provided to setup the host lxd bridge. Can not be combined
with lxd.preseed.

∗ mode: (none/existing/new) Whether to setup LXD bridge, use an existing bridge by name or create
a new bridge. none will avoid bridge setup, existing will configure lxd to use the bring matching name
and new will create a new bridge.

∗ name: (string) Name of the LXD network bridge to attach or create. Default: lxdbr0.

∗ mtu: (integer) Bridge MTU, defaults to LXD’s default value

∗ ipv4_address: (string) IPv4 address for the bridge. If set, ipv4_netmask key required.

∗ ipv4_netmask: (integer) Prefix length for the ipv4_address key. Required when ipv4_address is
set.

∗ ipv4_dhcp_first: (string) First IPv4 address of the DHCP range for the network created. This value
will combined with ipv4_dhcp_last key to set LXC ipv4.dhcp.ranges.

∗ ipv4_dhcp_last: (string) Last IPv4 address of the DHCP range for the network created. This value
will combined with ipv4_dhcp_first key to set LXC ipv4.dhcp.ranges.

∗ ipv4_dhcp_leases: (integer) Number of DHCP leases to allocate within the range. Automatically
calculated based on ipv4_dhcp_first and ipv4_dhcp_last when unset.

∗ ipv4_nat: (boolean) Set true to NAT the IPv4 traffic allowing for a routed IPv4 network. Default:
false.

∗ ipv6_address: (string) IPv6 address for the bridge (CIDR notation). When set, ipv6_netmask key
is required. When absent, no IPv6 will be configured.

∗ ipv6_netmask: (integer) Prefix length for ipv6_address provided. Required when ipv6_address
is set.

∗ ipv6_nat: (boolean) Whether to NAT. Default: false.

∗ domain: (string) Domain to advertise to DHCP clients and use for DNS resolution.

– preseed: (string) Opaque LXD preseed YAML config passed via stdin to the command: lxd init –preseed.
See: https://documentation.ubuntu.com/lxd/en/latest/howto/initialize/#non-interactive-configuration or
lxd init –dump for viable config. Can not be combined with either lxd.init or lxd.bridge.

2.4. Reference 103

https://documentation.ubuntu.com/lxd/en/latest/howto/initialize/#non-interactive-configuration

cloud-init, Release 24.1.3

Examples

--- Example1 ---

Simplest working directory backed LXD configuration
lxd:
init:
storage_backend: dir

--- Example2 ---

LXD init showcasing cloud-init's LXD config options
lxd:
init:
network_address: 0.0.0.0
network_port: 8443
storage_backend: zfs
storage_pool: datapool
storage_create_loop: 10

bridge:
mode: new
mtu: 1500
name: lxdbr0
ipv4_address: 10.0.8.1
ipv4_netmask: 24
ipv4_dhcp_first: 10.0.8.2
ipv4_dhcp_last: 10.0.8.3
ipv4_dhcp_leases: 250
ipv4_nat: true
ipv6_address: fd98:9e0:3744::1
ipv6_netmask: 64
ipv6_nat: true
domain: lxd

--- Example3 ---

For more complex non-iteractive LXD configuration of networks,
storage_pools, profiles, projects, clusters and core config,
`lxd:preseed` config will be passed as stdin to the command:
lxd init --preseed
See https://documentation.ubuntu.com/lxd/en/latest/howto/initialize/#non-interactive-
→˓configuration or
run: lxd init --dump to see viable preseed YAML allowed.
#
Preseed settings configuring the LXD daemon for HTTPS connections
on 192.168.1.1 port 9999, a nested profile which allows for
LXD nesting on containers and a limited project allowing for
RBAC approach when defining behavior for sub projects.
lxd:
preseed: |
config:
core.https_address: 192.168.1.1:9999

networks:
(continues on next page)

104 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

- config:
ipv4.address: 10.42.42.1/24
ipv4.nat: true
ipv6.address: fd42:4242:4242:4242::1/64
ipv6.nat: true

description: ""
name: lxdbr0
type: bridge
project: default

storage_pools:
- config:

size: 5GiB
source: /var/snap/lxd/common/lxd/disks/default.img

description: ""
name: default
driver: zfs

profiles:
- config: {}
description: Default LXD profile
devices:
eth0:
name: eth0
network: lxdbr0
type: nic

root:
path: /
pool: default
type: disk

name: default
- config: {}
security.nesting: true
devices:
eth0:
name: eth0
network: lxdbr0
type: nic

root:
path: /
pool: default
type: disk

name: nested
projects:
- config:

features.images: true
features.networks: true
features.profiles: true
features.storage.volumes: true

description: Default LXD project
name: default

- config:
features.images: false
features.networks: true

(continues on next page)

2.4. Reference 105

cloud-init, Release 24.1.3

(continued from previous page)

features.profiles: false
features.storage.volumes: false

description: Limited Access LXD project
name: limited

Mcollective

Install, configure and start mcollective

Summary

This module installs, configures and starts mcollective. If the mcollective key is present in config, then mcollective
will be installed and started.

Configuration for mcollective can be specified in the conf key under mcollective. Each config value consists
of a key value pair and will be written to /etc/mcollective/server.cfg. The public-cert and private-cert
keys, if present in conf may be used to specify the public and private certificates for mcollective. Their values will be
written to /etc/mcollective/ssl/server-public.pem and /etc/mcollective/ssl/server-private.pem.

Note: The ec2 metadata service is readable by non-root users. If security is a concern, use include-once and ssl urls.

Internal name: cc_mcollective

Module frequency: once-per-instance

Supported distros: all

Activate only on keys: mcollective

Config schema

• mcollective: (object)

– conf: (object)

∗ public-cert: (string) Optional value of server public certificate which will be written to /etc/
mcollective/ssl/server-public.pem

∗ private-cert: (string) Optional value of server private certificate which will be written to /etc/
mcollective/ssl/server-private.pem

∗ ^.+$: (boolean/integer/string) Optional config key: value pairs which will be appended to /etc/
mcollective/server.cfg.

106 Chapter 2. Project and community

cloud-init, Release 24.1.3

Examples

--- Example1 ---

Provide server private and public key and provide the following
config settings in /etc/mcollective/server.cfg:
loglevel: debug
plugin.stomp.host: dbhost

WARNING WARNING WARNING
The ec2 metadata service is a network service, and thus is
readable by non-root users on the system
(ie: 'ec2metadata --user-data')
If you want security for this, please use include-once + SSL urls
mcollective:
conf:
loglevel: debug
plugin.stomp.host: dbhost
public-cert: |

-------BEGIN CERTIFICATE--------
<cert data>
-------END CERTIFICATE--------

private-cert: |
-------BEGIN CERTIFICATE--------
<cert data>
-------END CERTIFICATE--------

Mounts

Configure mount points and swap files

Summary

This module can add or remove mountpoints from /etc/fstab as well as configure swap. The mounts config key takes
a list of fstab entries to add. Each entry is specified as a list of [fs_spec, fs_file, fs_vfstype, fs_mntops,
fs-freq, fs_passno]. For more information on these options, consult the manual for /etc/fstab. When speci-
fying the fs_spec, if the device name starts with one of xvd, sd, hd, or vd, the leading /dev may be omitted.

Any mounts that do not appear to either an attached block device or network resource will be skipped with a log like
“Ignoring nonexistent mount . . . ”.

Cloud-init will attempt to add the following mount directives if available and unconfigured in /etc/fstab:

mounts:
- ["ephemeral0", "/mnt", "auto","defaults,nofail,x-systemd.requires=cloud-init.

→˓service", "0", "2"]
- ["swap", "none", "swap", "sw", "0", "0"]

In order to remove a previously listed mount, an entry can be added to the mounts list containing fs_spec for the
device to be removed but no mountpoint (i.e. [swap] or [swap, null]).

The mount_default_fields config key allows default values to be specified for the fields in a mounts entry that are
not specified, aside from the fs_spec and the fs_file fields. If specified, this must be a list containing 6 values. It

2.4. Reference 107

cloud-init, Release 24.1.3

defaults to:

mount_default_fields: [none, none, "auto","defaults,nofail,x-systemd.requires=cloud-init.
→˓service", "0", "2"]

Non-systemd init systems will vary in mount_default_fields.

Swap files can be configured by setting the path to the swap file to create with filename, the size of the swap file with
size maximum size of the swap file if using an size: auto with maxsize. By default no swap file is created.

Note: If multiple mounts are specified where a subsequent mount’s mountpoint is inside of a previously declared
mount’s mountpoint (i.e. the 1st mount has a mountpoint of /abc and the 2nd mount has a mountpoint of /abc/def)
then this will not work as expected - cc_mounts first creates the directories for all the mountpoints before it starts to
perform any mounts and so the sub-mountpoint directory will not be created correctly inside the parent mountpoint.

For systems using util-linux’s mount program this issue can be worked around by specifying X-mount.mkdir as part
of a fs_mntops value for the subsequent mount entry.

Internal name: cc_mounts

Module frequency: once-per-instance

Supported distros: all

Config schema

• mounts: (array of array) List of lists. Each inner list entry is a list of /etc/fstab mount declarations of the
format: [fs_spec, fs_file, fs_vfstype, fs_mntops, fs-freq, fs_passno]. A mount declaration with less than 6 items
will get remaining values from mount_default_fields. A mount declaration with only fs_spec and no fs_file
mountpoint will be skipped.

• mount_default_fields: (array of (string/null)) Default mount configuration for any mount entry with less than 6
options provided. When specified, 6 items are required and represent /etc/fstab entries. Default: defaults,
nofail,x-systemd.requires=cloud-init.service,_netdev

• swap: (object)

– filename: (string) Path to the swap file to create

– size: (auto/integer/string) The size in bytes of the swap file, ‘auto’ or a human-readable size abbreviation
of the format <float_size><units> where units are one of B, K, M, G or T. WARNING: Attempts to use
IEC prefixes in your configuration prior to cloud-init version 23.1 will result in unexpected behavior.
SI prefixes names (KB, MB) are required on pre-23.1 cloud-init, however IEC values are used. In
summary, assume 1KB == 1024B, not 1000B

– maxsize: (integer/string) The maxsize in bytes of the swap file

108 Chapter 2. Project and community

cloud-init, Release 24.1.3

Examples

--- Example1 ---

Mount ephemeral0 with "noexec" flag, /dev/sdc with mount_default_fields,
and /dev/xvdh with custom fs_passno "0" to avoid fsck on the mount.
Also provide an automatically sized swap with a max size of 10485760
bytes.
mounts:

- [/dev/ephemeral0, /mnt, auto, "defaults,noexec"]
- [sdc, /opt/data]
- [xvdh, /opt/data, auto, "defaults,nofail", "0", "0"]

mount_default_fields: [None, None, auto, "defaults,nofail", "0", "2"]
swap:

filename: /my/swapfile
size: auto
maxsize: 10485760

--- Example2 ---

Create a 2 GB swap file at /swapfile using human-readable values
swap:

filename: /swapfile
size: 2G
maxsize: 2G

NTP

enable and configure ntp

Summary

Handle ntp configuration. If ntp is not installed on the system and ntp configuration is specified, ntp will be installed.
If there is a default ntp config file in the image or one is present in the distro’s ntp package, it will be copied to a
file with .dist appended to the filename before any changes are made. A list of ntp pools and ntp servers can be
provided under the ntp config key. If no ntp servers or pools are provided, 4 pools will be used in the format
{0-3}.{distro}.pool.ntp.org.

Internal name: cc_ntp

Module frequency: once-per-instance

Supported distros: almalinux, alpine, azurelinux, centos, cloudlinux, cos, debian, eurolinux, fedora, freebsd, mariner,
miraclelinux, openbsd, openeuler, OpenCloudOS, openmandriva, opensuse, opensuse-microos, opensuse-tumbleweed,
opensuse-leap, photon, rhel, rocky, sle_hpc, sle-micro, sles, TencentOS, ubuntu, virtuozzo

Activate only on keys: ntp

2.4. Reference 109

cloud-init, Release 24.1.3

Config schema

• ntp: (null/object)

– pools: (array of string) List of ntp pools. If both pools and servers are empty, 4 default pool servers will
be provided of the format {0-3}.{distro}.pool.ntp.org. NOTE: for Alpine Linux when using the
Busybox NTP client this setting will be ignored due to the limited functionality of Busybox’s ntpd.

– servers: (array of string) List of ntp servers. If both pools and servers are empty, 4 default pool servers
will be provided with the format {0-3}.{distro}.pool.ntp.org.

– peers: (array of string) List of ntp peers.

– allow: (array of string) List of CIDRs to allow

– ntp_client: (string) Name of an NTP client to use to configure system NTP. When unprovided or ‘auto’ the
default client preferred by the distribution will be used. The following built-in client names can be used to
override existing configuration defaults: chrony, ntp, openntpd, ntpdate, systemd-timesyncd.

– enabled: (boolean) Attempt to enable ntp clients if set to True. If set to False, ntp client will not be
configured or installed

– config: (object) Configuration settings or overrides for the ntp_client specified.

∗ confpath: (string) The path to where the ntp_client configuration is written.

∗ check_exe: (string) The executable name for the ntp_client. For example, ntp service check_exe
is ‘ntpd’ because it runs the ntpd binary.

∗ packages: (array of string) List of packages needed to be installed for the selected ntp_client.

∗ service_name: (string) The systemd or sysvinit service name used to start and stop the ntp_client
service.

∗ template: (string) Inline template allowing users to customize their ntp_client configuration with
the use of the Jinja templating engine. The template content should start with ## template:jinja.
Within the template, you can utilize any of the following ntp module config keys: servers, pools,
allow, and peers. Each cc_ntp schema config key and expected value type is defined above.

Examples

--- Example1 ---

Override ntp with chrony configuration on Ubuntu
ntp:
enabled: true
ntp_client: chrony # Uses cloud-init default chrony configuration

--- Example2 ---

Provide a custom ntp client configuration
ntp:
enabled: true
ntp_client: myntpclient
config:
confpath: /etc/myntpclient/myntpclient.conf
check_exe: myntpclientd
packages:

(continues on next page)

110 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

- myntpclient
service_name: myntpclient
template: |

template:jinja
My NTP Client config
{% if pools -%}# pools{% endif %}
{% for pool in pools -%}
pool {{pool}} iburst
{% endfor %}
{%- if servers %}# servers
{% endif %}
{% for server in servers -%}
server {{server}} iburst
{% endfor %}
{% if peers -%}# peers{% endif %}
{% for peer in peers -%}
peer {{peer}}
{% endfor %}
{% if allow -%}# allow{% endif %}
{% for cidr in allow -%}
allow {{cidr}}
{% endfor %}

pools: [0.int.pool.ntp.org, 1.int.pool.ntp.org, ntp.myorg.org]
servers:
- ntp.server.local
- ntp.ubuntu.com
- 192.168.23.2

allow:
- 192.168.23.0/32

peers:
- km001
- km002

Package Update Upgrade Install

Update, upgrade, and install packages

Summary

This module allows packages to be updated, upgraded or installed during boot. If any packages are to be installed or an
upgrade is to be performed then the package cache will be updated first. If a package installation or upgrade requires a
reboot, then a reboot can be performed if package_reboot_if_required is specified.

Internal name: cc_package_update_upgrade_install

Module frequency: once-per-instance

Supported distros: all

Activate only on keys: apt_update, package_update, apt_upgrade, package_upgrade, packages

2.4. Reference 111

cloud-init, Release 24.1.3

Config schema

• packages: (array of (string/array/object)) An array containing either a package specification, or an object con-
sisting of a package manager key having a package specification value . A package specification can be either
a package name or a list with two entries, the first being the package name and the second being the specific
package version to install.

– Each object in packages list supports the following keys:

– apt: (array of (array of string/string))

– snap: (array of (array of string/string))

• package_update: (boolean) Set true to update packages. Happens before upgrade or install. Default: false

• package_upgrade: (boolean) Set true to upgrade packages. Happens before install. Default: false

• package_reboot_if_required: (boolean) Set true to reboot the system if required by presence of
/var/run/reboot-required. Default: false

• apt_update: (boolean) Default: false.

Deprecated in version 22.2. Use ``package_update`` instead.

• apt_upgrade: (boolean) Default: false.

Deprecated in version 22.2. Use ``package_upgrade`` instead.

• apt_reboot_if_required: (boolean) Default: false.

Deprecated in version 22.2. Use ``package_reboot_if_required`` instead.

Examples

--- Example1 ---

packages:
- pwgen
- pastebinit
- [libpython3.8, 3.8.10-0ubuntu1~20.04.2]
- snap:

- certbot
- [juju, --edge]
- [lxd, --channel=5.15/stable]

- apt:
- mg

package_update: true
package_upgrade: true
package_reboot_if_required: true

112 Chapter 2. Project and community

cloud-init, Release 24.1.3

Phone Home

Post data to url

Summary

This module can be used to post data to a remote host after boot is complete. If the post url contains the string
$INSTANCE_ID it will be replaced with the id of the current instance. Either all data can be posted or a list of keys to
post. Available keys are:

• pub_key_rsa

• pub_key_ecdsa

• pub_key_ed25519

• instance_id

• hostname

• fdqn

Data is sent as x-www-form-urlencoded arguments.

Example HTTP POST:

POST / HTTP/1.1
Content-Length: 1337
User-Agent: Cloud-Init/21.4
Accept-Encoding: gzip, deflate
Accept: */*
Content-Type: application/x-www-form-urlencoded

pub_key_rsa=rsa_contents&pub_key_ecdsa=ecdsa_contents&pub_key_ed25519=ed25519_contents&
→˓instance_id=i-87018aed&hostname=myhost&fqdn=myhost.internal

Internal name: cc_phone_home

Module frequency: once-per-instance

Supported distros: all

Activate only on keys: phone_home

Config schema

• phone_home: (object)

– url: (string) The URL to send the phone home data to.

– post: (all/array) A list of keys to post or all. Default: all

– tries: (integer) The number of times to try sending the phone home data. Default: 10

2.4. Reference 113

cloud-init, Release 24.1.3

Examples

--- Example1 ---

phone_home:
url: http://example.com/$INSTANCE_ID/
post: all

--- Example2 ---

phone_home:
url: http://example.com/$INSTANCE_ID/
post:

- pub_key_rsa
- pub_key_ecdsa
- pub_key_ed25519
- instance_id
- hostname
- fqdn

tries: 5

Power State Change

Change power state

Summary

This module handles shutdown/reboot after all config modules have been run. By default it will take no action, and the
system will keep running unless a package installation/upgrade requires a system reboot (e.g. installing a new kernel)
and package_reboot_if_required is true.

Using this module ensures that cloud-init is entirely finished with modules that would be executed.

An example to distinguish delay from timeout:

If you delay 5 (5 minutes) and have a timeout of 120 (2 minutes), then the max time until shutdown will be 7 minutes,
though it could be as soon as 5 minutes. Cloud-init will invoke ‘shutdown +5’ after the process finishes, or when
‘timeout’ seconds have elapsed.

Note: With Alpine Linux any message value specified is ignored as Alpine’s halt, poweroff, and reboot commands do
not support broadcasting a message.

Internal name: cc_power_state_change

Module frequency: once-per-instance

Supported distros: all

Activate only on keys: power_state

114 Chapter 2. Project and community

cloud-init, Release 24.1.3

Config schema

• power_state: (object)

– delay: (integer/string/now) Time in minutes to delay after cloud-init has finished. Can be now or an integer
specifying the number of minutes to delay. Default: now.

Changed in version 22.3. Use of type string for this value is deprecated. Use ``now`` or integer type.

– mode: (poweroff/reboot/halt) Must be one of poweroff, halt, or reboot.

– message: (string) Optional message to display to the user when the system is powering off or rebooting.

– timeout: (integer) Time in seconds to wait for the cloud-init process to finish before executing shutdown.
Default: 30

– condition: (string/boolean/array) Apply state change only if condition is met. May be boolean true (always
met), false (never met), or a command string or list to be executed. For command formatting, see the
documentation for cc_runcmd. If exit code is 0, condition is met, otherwise not. Default: true

Examples

--- Example1 ---

power_state:
delay: now
mode: poweroff
message: Powering off
timeout: 2
condition: true

--- Example2 ---

power_state:
delay: 30
mode: reboot
message: Rebooting machine
condition: test -f /var/tmp/reboot_me

Puppet

Install, configure and start puppet

Summary

This module handles puppet installation and configuration. If the puppet key does not exist in global configuration, no
action will be taken. If a config entry for puppet is present, then by default the latest version of puppet will be installed.
If the puppet config key exists in the config archive, this module will attempt to start puppet even if no installation was
performed.

The module also provides keys for configuring the new puppet 4 paths and installing the puppet package from the pup-
petlabs repositories: https://docs.puppet.com/puppet/4.2/reference/whered_it_go.html The keys are package_name,
conf_file, ssl_dir and csr_attributes_path. If unset, their values will default to ones that work with puppet
3.x and with distributions that ship modified puppet 4.x that uses the old paths.

2.4. Reference 115

https://docs.puppet.com/puppet/4.2/reference/whered_it_go.html

cloud-init, Release 24.1.3

Internal name: cc_puppet

Module frequency: once-per-instance

Supported distros: all

Activate only on keys: puppet

Config schema

• puppet: (object)

– install: (boolean) Whether or not to install puppet. Setting to false will result in an error if puppet is not
already present on the system. Default: true

– version: (string) Optional version to pass to the installer script or package manager. If unset, the latest
version from the repos will be installed.

– install_type: (packages/aio) Valid values are packages and aio. Agent packages from the puppetlabs
repositories can be installed by setting aio. Based on this setting, the default config/SSL/CSR paths will
be adjusted accordingly. Default: packages

– collection: (string) Puppet collection to install if install_type is aio. This can be set to one of puppet
(rolling release), puppet6, puppet7 (or their nightly counterparts) in order to install specific release
streams.

– aio_install_url: (string) If install_type is aio, change the url of the install script.

– cleanup: (boolean) Whether to remove the puppetlabs repo after installation if install_type is aio
Default: true

– conf_file: (string) The path to the puppet config file. Default depends on install_type

– ssl_dir: (string) The path to the puppet SSL directory. Default depends on install_type

– csr_attributes_path: (string) The path to the puppet csr attributes file. Default depends on install_type

– package_name: (string) Name of the package to install if install_type is packages. Default: puppet

– exec: (boolean) Whether or not to run puppet after configuration finishes. A single manual run can be
triggered by setting exec to true, and additional arguments can be passed to puppet agent via the
exec_args key (by default the agent will execute with the --test flag). Default: false

– exec_args: (array of string) A list of arguments to pass to ‘puppet agent’ if ‘exec’ is true Default:
['--test']

– start_service: (boolean) By default, the puppet service will be automatically enabled after installation and
set to automatically start on boot. To override this in favor of manual puppet execution set start_service
to false

– conf: (object) Every key present in the conf object will be added to puppet.conf. As such, section names
should be one of: main, server, agent or user and keys should be valid puppet configuration op-
tions. The configuration is specified as a dictionary containing high-level <section> keys and lists of
<key>=<value> pairs within each section. The certname key supports string substitutions for %i and %f,
corresponding to the instance id and fqdn of the machine respectively.

ca_cert is a special case. It won’t be added to puppet.conf. It holds the puppetserver certificate in pem
format. It should be a multi-line string (using the | YAML notation for multi-line strings).

∗ main: (object)

∗ server: (object)

∗ agent: (object)

116 Chapter 2. Project and community

cloud-init, Release 24.1.3

∗ user: (object)

∗ ca_cert: (string)

– csr_attributes: (object) create a csr_attributes.yaml file for CSR attributes and certificate extension
requests. See https://puppet.com/docs/puppet/latest/config_file_csr_attributes.html

∗ custom_attributes: (object)

∗ extension_requests: (object)

Examples

--- Example1 ---

puppet:
install: true
version: "7.7.0"
install_type: "aio"
collection: "puppet7"
aio_install_url: 'https://git.io/JBhoQ'
cleanup: true
conf_file: "/etc/puppet/puppet.conf"
ssl_dir: "/var/lib/puppet/ssl"
csr_attributes_path: "/etc/puppet/csr_attributes.yaml"
exec: true
exec_args: ['--test']
conf:

agent:
server: "puppetserver.example.org"
certname: "%i.%f"

ca_cert: |
-----BEGIN CERTIFICATE-----
MIICCTCCAXKgAwIBAgIBATANBgkqhkiG9w0BAQUFADANMQswCQYDVQQDDAJjYTAe
Fw0xMDAyMTUxNzI5MjFaFw0xNTAyMTQxNzI5MjFaMA0xCzAJBgNVBAMMAmNhMIGf
MA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCu7Q40sm47/E1Pf+r8AYb/V/FWGPgc
b014OmNoX7dgCxTDvps/h8Vw555PdAFsW5+QhsGr31IJNI3kSYprFQcYf7A8tNWu
1MASW2CfaEiOEi9F1R3R4Qlz4ix+iNoHiUDTjazw/tZwEdxaQXQVLwgTGRwVa+aA
qbutJKi93MILLwIDAQABo3kwdzA4BglghkgBhvhCAQ0EKxYpUHVwcGV0IFJ1Ynkv
T3BlblNTTCBHZW5lcmF0ZWQgQ2VydGlmaWNhdGUwDwYDVR0TAQH/BAUwAwEB/zAd
BgNVHQ4EFgQUu4+jHB+GYE5Vxo+ol1OAhevspjAwCwYDVR0PBAQDAgEGMA0GCSqG
SIb3DQEBBQUAA4GBAH/rxlUIjwNb3n7TXJcDJ6MMHUlwjr03BDJXKb34Ulndkpaf
+GAlzPXWa7bO908M9I8RnPfvtKnteLbvgTK+h+zX1XCty+S2EQWk29i2AdoqOTxb
hppiGMp0tT5Havu4aceCXiy2crVcudj3NFciy8X66SoECemW9UYDCb9T5D0d
-----END CERTIFICATE-----

csr_attributes:
custom_attributes:

1.2.840.113549.1.9.7: 342thbjkt82094y0uthhor289jnqthpc2290
extension_requests:

pp_uuid: ED803750-E3C7-44F5-BB08-41A04433FE2E
pp_image_name: my_ami_image
pp_preshared_key: 342thbjkt82094y0uthhor289jnqthpc2290

--- Example2 ---
(continues on next page)

2.4. Reference 117

https://puppet.com/docs/puppet/latest/config_file_csr_attributes.html

cloud-init, Release 24.1.3

(continued from previous page)

puppet:
install_type: "packages"
package_name: "puppet"
exec: false

Resizefs

Resize filesystem

Summary

Resize a filesystem to use all available space on partition. This module is useful along with cc_growpart and will en-
sure that if the root partition has been resized the root filesystem will be resized along with it. By default, cc_resizefs
will resize the root partition and will block the boot process while the resize command is running. Optionally, the resize
operation can be performed in the background while cloud-init continues running modules. This can be enabled by
setting resize_rootfs to noblock. This module can be disabled altogether by setting resize_rootfs to false.

Internal name: cc_resizefs

Module frequency: always

Supported distros: all

Config schema

• resize_rootfs: (true/false/noblock) Whether to resize the root partition. noblock will resize in the back-
ground. Default: true

Examples

--- Example1 ---

resize_rootfs: false # disable root filesystem resize operation
--- Example2 ---

resize_rootfs: noblock # runs resize operation in the background

Resolv Conf

Configure resolv.conf

118 Chapter 2. Project and community

cloud-init, Release 24.1.3

Summary

Unless manually editing /etc/resolv.conf is the correct way to manage nameserver information on your operating
system, you do not want to use this module. Many distros have moved away from manually editing resolv.conf so
please verify that this is the preferred nameserver management method for your distro before using this module.

Note that using Network configuration is preferred, rather than using this module, when possible.

This module is intended to manage resolv.conf in environments where early configuration of resolv.conf is necessary
for further bootstrapping and/or where configuration management such as puppet or chef own DNS configuration.

When using a Config drive and a RHEL-like system, resolv.conf will also be managed automatically due to the available
information provided for DNS servers in the Networking config Version 2 format. For those that wish to have different
settings, use this module.

In order for the resolv_conf section to be applied, manage_resolv_conf must be set true.

Note: For Red Hat with sysconfig, be sure to set PEERDNS=no for all DHCP enabled NICs.

Internal name: cc_resolv_conf

Module frequency: once-per-instance

Supported distros: alpine, azurelinux, fedora, mariner, opensuse, opensuse-leap, opensuse-microos, opensuse-
tumbleweed, photon, rhel, sle_hpc, sle-micro, sles, openeuler

Activate only on keys: manage_resolv_conf

Config schema

• manage_resolv_conf: (boolean) Whether to manage the resolv.conf file. resolv_conf block will be ignored
unless this is set to true. Default: false

• resolv_conf: (object)

– nameservers: (array) A list of nameservers to use to be added as nameserver lines

– searchdomains: (array) A list of domains to be added search line

– domain: (string) The domain to be added as domain line

– sortlist: (array) A list of IP addresses to be added to sortlist line

– options: (object) Key/value pairs of options to go under options heading. A unary option should be
specified as true

Examples

--- Example1 ---

manage_resolv_conf: true
resolv_conf:
nameservers:
- 8.8.8.8
- 8.8.4.4

searchdomains:
- foo.example.com

(continues on next page)

2.4. Reference 119

cloud-init, Release 24.1.3

(continued from previous page)

- bar.example.com
domain: example.com
sortlist:
- 10.0.0.1/255
- 10.0.0.2

options:
rotate: true
timeout: 1

Red Hat Subscription

Register Red Hat Enterprise Linux based system

Summary

Register a Red Hat system either by username and password or activation and org. Following a successful registration,
you can:

• auto-attach subscriptions

• set the service level

• add subscriptions based on pool id

• enable/disable yum repositories based on repo id

• alter the rhsm_baseurl and server-hostname in /etc/rhsm/rhs.conf.

Internal name: cc_rh_subscription

Module frequency: once-per-instance

Supported distros: fedora, rhel, openeuler

Activate only on keys: rh_subscription

Config schema

• rh_subscription: (object)

– username: (string) The username to use. Must be used with password. Should not be used with
activation-key or org

– password: (string) The password to use. Must be used with username. Should not be used with
activation-key or org

– activation-key: (string) The activation key to use. Must be used with org. Should not be used with
username or password

– org: (integer) The organization number to use. Must be used with activation-key. Should not be used
with username or password

– auto-attach: (boolean) Whether to attach subscriptions automatically

– service-level: (string) The service level to use when subscribing to RH repositories. auto-attach must
be true for this to be used

– add-pool: (array of string) A list of pools ids add to the subscription

120 Chapter 2. Project and community

cloud-init, Release 24.1.3

– enable-repo: (array of string) A list of repositories to enable

– disable-repo: (array of string) A list of repositories to disable

– rhsm-baseurl: (string) Sets the baseurl in /etc/rhsm/rhsm.conf

– server-hostname: (string) Sets the serverurl in /etc/rhsm/rhsm.conf

Examples

--- Example1 ---

rh_subscription:
username: joe@foo.bar
Quote your password if it has symbols to be safe
password: '1234abcd'

--- Example2 ---

rh_subscription:
activation-key: foobar
org: 12345

--- Example3 ---

rh_subscription:
activation-key: foobar
org: 12345
auto-attach: true
service-level: self-support
add-pool:
- 1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a
- 2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b

enable-repo:
- repo-id-to-enable
- other-repo-id-to-enable

disable-repo:
- repo-id-to-disable
- other-repo-id-to-disable

Alter the baseurl in /etc/rhsm/rhsm.conf
rhsm-baseurl: http://url
Alter the server hostname in /etc/rhsm/rhsm.conf
server-hostname: foo.bar.com

2.4. Reference 121

cloud-init, Release 24.1.3

Rsyslog

Configure system logging via rsyslog

Summary

This module configures remote system logging using rsyslog.

Configuration for remote servers can be specified in configs, but for convenience it can be specified as key value pairs
in remotes.

This module can install rsyslog if not already present on the system using the install_rsyslog, packages, and
check_exe options. Installation may not work on systems where this module runs before networking is up.

Note: On BSD cloud-init will attempt to disable and stop the base system syslogd. This may fail on a first run. We
recommend creating images with service syslogd disable.

Internal name: cc_rsyslog

Module frequency: once-per-instance

Supported distros: all

Activate only on keys: rsyslog

Config schema

• rsyslog: (object)

– config_dir: (string) The directory where rsyslog configuration files will be written. Default: /etc/
rsyslog.d

– config_filename: (string) The name of the rsyslog configuration file. Default: 20-cloud-config.conf

– configs: (array of (string/object)) Each entry in configs is either a string or an object. Each config entry
contains a configuration string and a file to write it to. For config entries that are an object, filename
sets the target filename and content specifies the config string to write. For config entries that are only a
string, the string is used as the config string to write. If the filename to write the config to is not specified,
the value of the config_filename key is used. A file with the selected filename will be written inside the
directory specified by config_dir.

∗ Each object in configs list supports the following keys:

∗ filename: (string)

∗ content: (string)

– remotes: (object) Each key is the name for an rsyslog remote entry. Each value holds the contents of the
remote config for rsyslog. The config consists of the following parts:

∗ filter for log messages (defaults to *.*)

∗ optional leading @ or @@, indicating udp and tcp respectively (defaults to @, for udp)

∗ ipv4 or ipv6 hostname or address. ipv6 addresses must be in [::1] format, (e.g. @[fd00::1]:514)

∗ optional port number (defaults to 514)

This module will provide sane defaults for any part of the remote entry that is not specified, so in most
cases remote hosts can be specified just using <name>: <address>.

122 Chapter 2. Project and community

cloud-init, Release 24.1.3

– service_reload_command: (auto/array) The command to use to reload the rsyslog service after the config
has been updated. If this is set to auto, then an appropriate command for the distro will be used. This is the
default behavior. To manually set the command, use a list of command args (e.g. [systemctl, restart,
rsyslog]).

– install_rsyslog: (boolean) Install rsyslog. Default: false

– check_exe: (string) The executable name for the rsyslog daemon. For example, rsyslogd, or /opt/
sbin/rsyslogd if the rsyslog binary is in an unusual path. This is only used if install_rsyslog is
true. Default: rsyslogd

– packages: (array of string) List of packages needed to be installed for rsyslog. This is only used if
install_rsyslog is true. Default: [rsyslog]

Examples

--- Example1 ---

rsyslog:
remotes:

maas: 192.168.1.1
juju: 10.0.4.1

service_reload_command: auto

--- Example2 ---

rsyslog:
config_dir: /opt/etc/rsyslog.d
config_filename: 99-late-cloud-config.conf
configs:

- "*.* @@192.158.1.1"
- content: "*.* @@192.0.2.1:10514"
filename: 01-example.conf

- content: |
. @@syslogd.example.com

remotes:
maas: 192.168.1.1
juju: 10.0.4.1

service_reload_command: [your, syslog, restart, command]

--- Example3 ---

default (no) configuration with package installation on FreeBSD
rsyslog:

config_dir: /usr/local/etc/rsyslog.d
check_exe: "rsyslogd"
packages: ["rsyslogd"]
install_rsyslog: True

2.4. Reference 123

cloud-init, Release 24.1.3

Runcmd

Run arbitrary commands

Summary

Run arbitrary commands at a rc.local like time-frame with output to the console. Each item can be either a list or a
string. The item type affects how it is executed:

• If the item is a string, it will be interpreted by sh.

• If the item is a list, the items will be executed as if passed to execve(3) (with the first arg as the command).

Note that the runcmd module only writes the script to be run later. The module that actually runs the script is
scripts_user in the Final boot stage.

Note: all commands must be proper yaml, so you have to quote any characters yaml would eat (‘:’ can be problematic)

Note: when writing files, do not use /tmp dir as it races with systemd-tmpfiles-clean LP: #1707222. Use /run/somedir
instead.

Internal name: cc_runcmd

Module frequency: once-per-instance

Supported distros: all

Activate only on keys: runcmd

Config schema

• runcmd: (array of (array of string/string/null))

Examples

--- Example1 ---

runcmd:
- [ls, -l, /]
- [sh, -xc, "echo $(date) ': hello world!'"]
- [sh, -c, echo "=========hello world'========="]
- ls -l /root
- [wget, "http://example.org", -O, /tmp/index.html]

124 Chapter 2. Project and community

cloud-init, Release 24.1.3

Salt Minion

Setup and run salt minion

Summary

This module installs, configures and starts salt minion. If the salt_minion key is present in the config parts, then salt
minion will be installed and started. Configuration for salt minion can be specified in the conf key under salt_minion.
Any conf values present there will be assigned in /etc/salt/minion. The public and private keys to use for salt
minion can be specified with public_key and private_key respectively. Optionally if you have a custom package
name, service name or config directory you can specify them with pkg_name, service_name and config_dir.

Salt keys can be manually generated by: salt-key --gen-keys=GEN_KEYS, where GEN_KEYS is the name of the
keypair, e.g. ‘minion’. The keypair will be copied to /etc/salt/pki on the minion instance.

Internal name: cc_salt_minion

Module frequency: once-per-instance

Supported distros: all

Activate only on keys: salt_minion

Config schema

• salt_minion: (object)

– pkg_name: (string) Package name to install. Default: salt-minion

– service_name: (string) Service name to enable. Default: salt-minion

– config_dir: (string) Directory to write config files to. Default: /etc/salt

– conf: (object) Configuration to be written to config_dir/minion

– grains: (object) Configuration to be written to config_dir/grains

– public_key: (string) Public key to be used by the salt minion

– private_key: (string) Private key to be used by salt minion

– pki_dir: (string) Directory to write key files. Default: config_dir/pki/minion

Examples

--- Example1 ---

salt_minion:
pkg_name: salt-minion
service_name: salt-minion
config_dir: /etc/salt
conf:

file_client: local
fileserver_backend:
- gitfs

gitfs_remotes:
- https://github.com/_user_/_repo_.git

(continues on next page)

2.4. Reference 125

cloud-init, Release 24.1.3

(continued from previous page)

master: salt.example.com
grains:

role:
- web

public_key: |
------BEGIN PUBLIC KEY-------
<key data>
------END PUBLIC KEY-------

private_key: |
------BEGIN PRIVATE KEY------
<key data>
------END PRIVATE KEY-------

pki_dir: /etc/salt/pki/minion

Scripts Per Boot

Run per boot scripts

Summary

Any scripts in the scripts/per-boot directory on the datasource will be run every time the system boots. Scripts
will be run in alphabetical order. This module does not accept any config keys.

Internal name: cc_scripts_per_boot

Module frequency: always

Supported distros: all

Config schema

No schema definitions for this module

Examples

No examples for this module

Scripts Per Instance

Run per instance scripts

126 Chapter 2. Project and community

cloud-init, Release 24.1.3

Summary

Any scripts in the scripts/per-instance directory on the datasource will be run when a new instance is first booted.
Scripts will be run in alphabetical order. This module does not accept any config keys.

Some cloud platforms change instance-id if a significant change was made to the system. As a result per-instance scripts
will run again.

Internal name: cc_scripts_per_instance

Module frequency: once-per-instance

Supported distros: all

Config schema

No schema definitions for this module

Examples

No examples for this module

Scripts Per Once

Run one time scripts

Summary

Any scripts in the scripts/per-once directory on the datasource will be run only once. Changes to the instance will
not force a re-run. The only way to re-run these scripts is to run the clean subcommand and reboot. Scripts will be run
in alphabetical order. This module does not accept any config keys.

Internal name: cc_scripts_per_once

Module frequency: once

Supported distros: all

Config schema

No schema definitions for this module

Examples

No examples for this module

2.4. Reference 127

cloud-init, Release 24.1.3

Scripts User

Run user scripts

Summary

This module runs all user scripts. User scripts are not specified in the scripts directory in the datasource, but rather
are present in the scripts dir in the instance configuration. Any cloud-config parts with a #! will be treated as a script
and run. Scripts specified as cloud-config parts will be run in the order they are specified in the configuration. This
module does not accept any config keys.

Internal name: cc_scripts_user

Module frequency: once-per-instance

Supported distros: all

Config schema

No schema definitions for this module

Examples

No examples for this module

Scripts Vendor

Run vendor scripts

Summary

On select Datasources, vendors have a channel for the consumption of all supported user data types via a special channel
called vendor data. Any scripts in the scripts/vendor directory in the datasource will be run when a new instance
is first booted. Scripts will be run in alphabetical order. This module allows control over the execution of vendor data.

Internal name: cc_scripts_vendor

Module frequency: once-per-instance

Supported distros: all

Config schema

• vendor_data: (object)

– enabled: (boolean) Whether vendor data is enabled or not. Default: true.

Deprecated in version 22.3. Use of type string for this value is deprecated. Use a boolean instead.

– prefix: (string/array of (string/integer)) The command to run before any vendor scripts. Its primary use
case is for profiling a script, not to prevent its run

128 Chapter 2. Project and community

cloud-init, Release 24.1.3

Examples

--- Example1 ---

vendor_data:
enabled: true
prefix: /usr/bin/ltrace

--- Example2 ---

vendor_data:
enabled: true
prefix: [timeout, 30]

--- Example3 ---

Vendor data will not be processed
vendor_data:
enabled: false

Seed Random

Provide random seed data

Summary

All cloud instances started from the same image will produce very similar data when they are first booted as they are
all starting with the same seed for the kernel’s entropy keyring. To avoid this, random seed data can be provided to the
instance either as a string or by specifying a command to run to generate the data.

Configuration for this module is under the random_seed config key. If the cloud provides its own random seed data,
it will be appended to data before it is written to file.

If the command key is specified, the given command will be executed. This will happen after file has been populated.
That command’s environment will contain the value of the file key as RANDOM_SEED_FILE. If a command is specified
that cannot be run, no error will be reported unless command_required is set to true.

Internal name: cc_seed_random

Module frequency: once-per-instance

Supported distros: all

Config schema

• random_seed: (object)

– file: (string) File to write random data to. Default: /dev/urandom

– data: (string) This data will be written to file before data from the datasource. When using a multi-line
value or specifying binary data, be sure to follow YAML syntax and use the | and !binary YAML format
specifiers when appropriate

– encoding: (raw/base64/b64/gzip/gz) Used to decode data provided. Allowed values are raw, base64,
b64, gzip, or gz. Default: raw

2.4. Reference 129

cloud-init, Release 24.1.3

– command: (array of string) Execute this command to seed random. The command will have RAN-
DOM_SEED_FILE in its environment set to the value of file above.

– command_required: (boolean) If true, and command is not available to be run then an exception is raised
and cloud-init will record failure. Otherwise, only debug error is mentioned. Default: false

Examples

--- Example1 ---

random_seed:
file: /dev/urandom
data: my random string
encoding: raw
command: ['sh', '-c', 'dd if=/dev/urandom of=$RANDOM_SEED_FILE']
command_required: true

--- Example2 ---

To use 'pollinate' to gather data from a remote entropy
server and write it to '/dev/urandom', the following
could be used:
random_seed:
file: /dev/urandom
command: ["pollinate", "--server=http://local.polinate.server"]
command_required: true

Set Hostname

Set hostname and FQDN

Summary

This module handles setting the system hostname and fully qualified domain name (FQDN). If preserve_hostname
is set, then the hostname will not be altered.

A hostname and FQDN can be provided by specifying a full domain name under the FQDN key. Alternatively, a hostname
can be specified using the hostname key, and the FQDN of the cloud will be used. If a FQDN specified with the
hostname key, it will be handled properly, although it is better to use the fqdn config key. If both fqdn and hostname
are set, the prefer_fqdn_over_hostname will force the use of FQDN in all distros when true, and when false it will
force the short hostname. Otherwise, the hostname to use is distro-dependent.

Note: cloud-init performs no hostname input validation before sending the hostname to distro-specific tools, and most
tools will not accept a trailing dot on the FQDN.

This module will run in the init-local stage before networking is configured if the hostname is set by metadata or user
data on the local system.

This will occur on datasources like nocloud and ovf where metadata and user data are available locally. This ensures
that the desired hostname is applied before any DHCP requests are performed on these platforms where dynamic DNS
is based on initial hostname.

130 Chapter 2. Project and community

cloud-init, Release 24.1.3

Internal name: cc_set_hostname

Module frequency: once-per-instance

Supported distros: all

Config schema

• preserve_hostname: (boolean) If true, the hostname will not be changed. Default: false

• hostname: (string) The hostname to set

• fqdn: (string) The fully qualified domain name to set

• prefer_fqdn_over_hostname: (boolean) If true, the fqdn will be used if it is set. If false, the hostname will be
used. If unset, the result is distro-dependent

• create_hostname_file: (boolean) If false, the hostname file (e.g. /etc/hostname) will not be created if it does
not exist. On systems that use systemd, setting create_hostname_file to false will set the hostname transiently.
If true, the hostname file will always be created and the hostname will be set statically on systemd systems.
Default: true

Examples

--- Example1 ---

preserve_hostname: true
--- Example2 ---

hostname: myhost
create_hostname_file: true
fqdn: myhost.example.com
prefer_fqdn_over_hostname: true

--- Example3 ---

On a machine without an ``/etc/hostname`` file, don't create it
In most clouds, this will result in a DHCP-configured hostname
provided by the cloud
create_hostname_file: false

Set Passwords

Set user passwords and enable/disable SSH password auth

2.4. Reference 131

cloud-init, Release 24.1.3

Summary

This module consumes three top-level config keys: ssh_pwauth, chpasswd and password.

The ssh_pwauth config key determines whether or not sshd will be configured to accept password authentication.

The chpasswd config key accepts a dictionary containing either or both of users and expire. The users key is used
to assign a password to a corresponding pre-existing user. The expire key is used to set whether to expire all user
passwords specified by this module, such that a password will need to be reset on the user’s next login.

Note: Prior to cloud-init 22.3, the expire key only applies to plain text (including RANDOM) passwords. Post 22.3, the
expire key applies to both plain text and hashed passwords.

password config key is used to set the default user’s password. It is ignored if the chpasswd users is used. Note: the
list keyword is deprecated in favor of users.

Internal name: cc_set_passwords

Module frequency: once-per-instance

Supported distros: all

Config schema

• ssh_pwauth: (boolean/string) Sets whether or not to accept password authentication. truewill enable password
auth. false will disable. Default: leave the value unchanged. In order for this config to be applied, SSH may
need to be restarted. On systemd systems, this restart will only happen if the SSH service has already been
started. On non-systemd systems, a restart will be attempted regardless of the service state..

Changed in version 22.3. Use of non-boolean values for this field is deprecated.

• chpasswd: (object)

– expire: (boolean) Whether to expire all user passwords such that a password will need to be reset on the
user’s next login. Default: true

– users: (array of object) This key represents a list of existing users to set passwords for. Each item under
users contains the following required keys: name and password or in the case of a randomly generated
password, name and type. The type key has a default value of hash, and may alternatively be set to text
or RANDOM. Randomly generated passwords may be insecure, use at your own risk.

– list: (string/array) List of username:password pairs. Each user will have the corresponding password
set. A password can be randomly generated by specifying RANDOM or R as a user’s password. A hashed
password, created by a tool like mkpasswd, can be specified. A regex (r'\$(1|2a|2y|5|6)(\$.+){2}')
is used to determine if a password value should be treated as a hash.

Deprecated in version 22.2. Use ``users`` instead.

• password: (string) Set the default user’s password. Ignored if chpasswd list is used

132 Chapter 2. Project and community

cloud-init, Release 24.1.3

Examples

--- Example1 ---

Set a default password that would need to be changed
at first login
ssh_pwauth: true
password: password1

--- Example2 ---

Disable ssh password authentication
Don't require users to change their passwords on next login
Set the password for user1 to be 'password1' (OS does hashing)
Set the password for user2 to a pre-hashed password
Set the password for user3 to be a randomly generated password,
which will be written to the system console
ssh_pwauth: false
chpasswd:
expire: false
users:
- name: user1
password: password1
type: text

- name: user2
password: 6rounds=4096$5DJ8a9WMTEzIo5J4

→˓$Yms6imfeBvf3Yfu84mQBerh18l7OR1Wm1BJXZqFSpJ6BVas0AYJqIjP7czkOaAZHZi1kxQ5Y1IhgWN8K9NgxR1
- name: user3
type: RANDOM

Snap

Install, configure and manage snapd and snap packages

Summary

This module provides a simple configuration namespace in cloud-init to both setup snapd and install snaps.

Note: Both assertions and commands values can be either a dictionary or a list. If these configs are provided as a
dictionary, the keys are only used to order the execution of the assertions or commands and the dictionary is merged
with any vendor-data snap configuration provided. If a list is provided by the user instead of a dict, any vendor-data
snap configuration is ignored.

The assertions configuration option is a dictionary or list of properly-signed snap assertions which will
run before any snap commands. They will be added to snapd’s assertion database by invoking snap ack
<aggregate_assertion_file>.

Snap commands is a dictionary or list of individual snap commands to run on the target system. These commands can
be used to create snap users, install snaps and provide snap configuration.

2.4. Reference 133

cloud-init, Release 24.1.3

Note: If ‘side-loading’ private/unpublished snaps on an instance, it is best to create a snap seed directory and seed.yaml
manifest in /var/lib/snapd/seed/ which snapd automatically installs on startup.

Internal name: cc_snap

Module frequency: once-per-instance

Supported distros: ubuntu

Activate only on keys: snap

Config schema

• snap: (object)

– assertions: (object/array of string) Properly-signed snap assertions which will run before and snap
commands.

– commands: (object/array of (string/array of string)) Snap commands to run on the target system

Examples

--- Example1 ---

snap:
assertions:
00: |
signed_assertion_blob_here

02: |
signed_assertion_blob_here

commands:
00: snap create-user --sudoer --known <snap-user>@mydomain.com
01: snap install canonical-livepatch
02: canonical-livepatch enable <AUTH_TOKEN>

--- Example2 ---

Convenience: the snap command can be omitted when specifying commands
as a list and 'snap' will automatically be prepended.
The following commands are equivalent:
snap:
commands:
00: ['install', 'vlc']
01: ['snap', 'install', 'vlc']
02: snap install vlc
03: 'snap install vlc'

--- Example3 ---

You can use a list of commands
snap:
commands:

(continues on next page)

134 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

- ['install', 'vlc']
- ['snap', 'install', 'vlc']
- snap install vlc
- 'snap install vlc'

--- Example4 ---

You can use a list of assertions
snap:
assertions:
- signed_assertion_blob_here
- |
signed_assertion_blob_here

Spacewalk

Install and configure spacewalk

Summary

This module installs spacewalk and applies basic configuration. If the spacewalk config key is present spacewalk will
be installed. The server to connect to after installation must be provided in the server in spacewalk configuration. A
proxy to connect through and a activation key may optionally be specified.

For more information about spacewalk see: https://fedorahosted.org/spacewalk/

Internal name: cc_spacewalk

Module frequency: once-per-instance

Supported distros: rhel, fedora, openeuler

Activate only on keys: spacewalk

Config schema

• spacewalk: (object)

– server: (string) The Spacewalk server to use

– proxy: (string) The proxy to use when connecting to Spacewalk

– activation_key: (string) The activation key to use when registering with Spacewalk

2.4. Reference 135

https://fedorahosted.org/spacewalk/

cloud-init, Release 24.1.3

Examples

--- Example1 ---

spacewalk:
server: <url>
proxy: <proxy host>
activation_key: <key>

SSH

Configure SSH and SSH keys

Summary

This module handles most configuration for SSH and both host and authorized SSH keys.

Authorized keys

Authorized keys are a list of public SSH keys that are allowed to connect to a user account on a system. They are stored
in .ssh/authorized_keys in that account’s home directory. Authorized keys for the default user defined in users can be
specified using ssh_authorized_keys. Keys should be specified as a list of public keys.

Note: See the cc_set_passwords module documentation to enable/disable SSH password authentication.

Root login can be enabled/disabled using the disable_root config key. Root login options can be manually specified
with disable_root_opts.

Supported public key types for the ssh_authorized_keys are:

• rsa

• ecdsa

• ed25519

• ecdsa-sha2-nistp256-cert-v01@openssh.com

• ecdsa-sha2-nistp256

• ecdsa-sha2-nistp384-cert-v01@openssh.com

• ecdsa-sha2-nistp384

• ecdsa-sha2-nistp521-cert-v01@openssh.com

• ecdsa-sha2-nistp521

• sk-ecdsa-sha2-nistp256-cert-v01@openssh.com

• sk-ecdsa-sha2-nistp256@openssh.com

• sk-ssh-ed25519-cert-v01@openssh.com

• sk-ssh-ed25519@openssh.com

• ssh-ed25519-cert-v01@openssh.com

• ssh-ed25519

136 Chapter 2. Project and community

mailto:ecdsa-sha2-nistp256-cert-v01@openssh.com
mailto:ecdsa-sha2-nistp384-cert-v01@openssh.com
mailto:ecdsa-sha2-nistp521-cert-v01@openssh.com
mailto:sk-ecdsa-sha2-nistp256-cert-v01@openssh.com
mailto:sk-ecdsa-sha2-nistp256@openssh.com
mailto:sk-ssh-ed25519-cert-v01@openssh.com
mailto:sk-ssh-ed25519@openssh.com
mailto:ssh-ed25519-cert-v01@openssh.com

cloud-init, Release 24.1.3

• ssh-rsa-cert-v01@openssh.com

• ssh-rsa

• ssh-xmss-cert-v01@openssh.com

• ssh-xmss@openssh.com

Note: this list has been filtered out from the supported keytypes of OpenSSH source, where the sigonly keys are
removed. Please see ssh_util for more information.

rsa, ecdsa and ed25519 are added for legacy, as they are valid public keys in some old distros. They can possibly be
removed in the future when support for the older distros are dropped

Host keys

Host keys are for authenticating a specific instance. Many images have default host SSH keys, which can be removed
using ssh_deletekeys.

Host keys can be added using the ssh_keys configuration key.

When host keys are generated the output of the ssh-keygen command(s) can be displayed on the console using the
ssh_quiet_keygen configuration key.

Note: When specifying private host keys in cloud-config, care should be taken to ensure that the communication
between the data source and the instance is secure.

If no host keys are specified using ssh_keys, then keys will be generated using ssh-keygen. By default one pub-
lic/private pair of each supported host key type will be generated. The key types to generate can be specified using
the ssh_genkeytypes config flag, which accepts a list of host key types to use. For each host key type for which
this module has been instructed to create a keypair, if a key of the same type is already present on the system (i.e. if
ssh_deletekeys was false), no key will be generated.

Supported host key types for the ssh_keys and the ssh_genkeytypes config flags are:

• ecdsa

• ed25519

• rsa

Unsupported host key types for the ssh_keys and the ssh_genkeytypes config flags are:

• ecdsa-sk

• ed25519-sk

Internal name: cc_ssh

Module frequency: once-per-instance

Supported distros: all

2.4. Reference 137

mailto:ssh-rsa-cert-v01@openssh.com
mailto:ssh-xmss-cert-v01@openssh.com
mailto:ssh-xmss@openssh.com
https://github.com/openssh/openssh-portable/blob/master/sshkey.c

cloud-init, Release 24.1.3

Config schema

• ssh_keys: (object) A dictionary entries for the public and private host keys of each desired key type. Entries
in the ssh_keys config dict should have keys in the format <key type>_private, <key type>_public,
and, optionally, <key type>_certificate, e.g. rsa_private: <key>, rsa_public: <key>, and
rsa_certificate: <key>. Not all key types have to be specified, ones left unspecified will not be used.
If this config option is used, then separate keys will not be automatically generated. In order to specify multi-line
private host keys and certificates, use YAML multi-line syntax. Note: Your ssh keys might possibly be visible
to unprivileged users on your system, depending on your cloud’s security model.

– <key_type>: (string)

• ssh_authorized_keys: (array of string) The SSH public keys to add .ssh/authorized_keys in the default
user’s home directory

• ssh_deletekeys: (boolean) Remove host SSH keys. This prevents re-use of a private host key from an image with
default host SSH keys. Default: true

• ssh_genkeytypes: (array of string) The SSH key types to generate. Default: [rsa, ecdsa, ed25519]

• disable_root: (boolean) Disable root login. Default: true

• disable_root_opts: (string) Disable root login options. If disable_root_opts is specified and contains
the string $USER, it will be replaced with the username of the default user. Default: no-port-forwarding,
no-agent-forwarding,no-X11-forwarding,command="echo 'Please login as the user \
"$USER\" rather than the user \"$DISABLE_USER\".';echo;sleep 10;exit 142"

• allow_public_ssh_keys: (boolean) If true, will import the public SSH keys from the datasource’s metadata to
the user’s .ssh/authorized_keys file. Default: true

• ssh_quiet_keygen: (boolean) If true, will suppress the output of key generation to the console. Default: false

• ssh_publish_hostkeys: (object)

– enabled: (boolean) If true, will read host keys from /etc/ssh/*.pub and publish them to the datasource
(if supported). Default: true

– blacklist: (array of string) The SSH key types to ignore when publishing. Default: [] to publish all SSH
key types

Examples

--- Example1 ---

ssh_keys:
rsa_private: |
-----BEGIN RSA PRIVATE KEY-----
MIIBxwIBAAJhAKD0YSHy73nUgysO13XsJmd4fHiFyQ+00R7VVu2iV9Qco
...
-----END RSA PRIVATE KEY-----

rsa_public: ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAGEAoPRhIfLvedSDKw7Xd ...
rsa_certificate: |

ssh-rsa-cert-v01@openssh.com AAAAIHNzaC1lZDI1NTE5LWNlcnQt ...
ssh_authorized_keys:
- ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAGEA3FSyQwBI6Z+nCSjUU ...
- ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEA3I7VUf2l5gSn5uavROsc5HRDpZ ...

ssh_deletekeys: true
ssh_genkeytypes: [rsa, ecdsa, ed25519]

(continues on next page)

138 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

disable_root: true
disable_root_opts: no-port-forwarding,no-agent-forwarding,no-X11-forwarding
allow_public_ssh_keys: true
ssh_quiet_keygen: true
ssh_publish_hostkeys:
enabled: true
blacklist: [rsa]

SSH AuthKey Fingerprints

Log fingerprints of user SSH keys

Summary

Write fingerprints of authorized keys for each user to log. This is enabled by default, but can be disabled using
no_ssh_fingerprints. The hash type for the keys can be specified, but defaults to sha256.

Internal name: cc_ssh_authkey_fingerprints

Module frequency: once-per-instance

Supported distros: all

Config schema

• no_ssh_fingerprints: (boolean) If true, SSH fingerprints will not be written. Default: false

• authkey_hash: (string) The hash type to use when generating SSH fingerprints. Default: sha256

Examples

--- Example1 ---

no_ssh_fingerprints: true
--- Example2 ---

authkey_hash: sha512

SSH Import ID

Import SSH id

2.4. Reference 139

cloud-init, Release 24.1.3

Summary

This module imports SSH keys from either a public keyserver, usually launchpad or github using ssh-import-id.
Keys are referenced by the username they are associated with on the keyserver. The keyserver can be specified by
prepending either lp: for launchpad or gh: for github to the username.

Internal name: cc_ssh_import_id

Module frequency: once-per-instance

Supported distros: alpine, cos, debian, ubuntu

Config schema

• ssh_import_id: (array of string)

Examples

--- Example1 ---

ssh_import_id:
- user
- gh:user
- lp:user

Timezone

Set the system timezone

Summary

Sets the system timezone based on the value provided.

Internal name: cc_timezone

Module frequency: once-per-instance

Supported distros: all

Activate only on keys: timezone

Config schema

• timezone: (string) The timezone to use as represented in /usr/share/zoneinfo

140 Chapter 2. Project and community

https://www.iana.org/time-zones

cloud-init, Release 24.1.3

Examples

--- Example1 ---

timezone: US/Eastern

Ubuntu Drivers

Interact with third party drivers in Ubuntu.

Summary

This module interacts with the ‘ubuntu-drivers’ command to install third party driver packages.

Internal name: cc_ubuntu_drivers

Module frequency: once-per-instance

Supported distros: ubuntu

Activate only on keys: drivers

Config schema

• drivers: (object)

– nvidia: (object)

∗ license-accepted: (boolean) Do you accept the NVIDIA driver license?

∗ version: (string) The version of the driver to install (e.g. “390”, “410”). Default: latest version.

Examples

--- Example1 ---

drivers:
nvidia:
license-accepted: true

Ubuntu Pro

Configure Ubuntu Pro support services

2.4. Reference 141

cloud-init, Release 24.1.3

Summary

Attach machine to an existing Ubuntu Pro support contract and enable or disable support services such as Livepatch,
ESM, FIPS and FIPS Updates. When attaching a machine to Ubuntu Pro, one can also specify services to enable.
When the ‘enable’ list is present, only named services will be activated. Whereas if the ‘enable’ list is not present, the
contract’s default services will be enabled.

On Pro instances, when ubuntu_pro config is provided to cloud-init, Pro’s auto-attach feature will be disabled and
cloud-init will perform the Pro auto-attach ignoring the token key. The enable and enable_beta values will strictly
determine what services will be enabled, ignoring contract defaults.

Note that when enabling FIPS or FIPS updates you will need to schedule a reboot to ensure the machine is running the
FIPS-compliant kernel. See Power State Change for information on how to configure cloud-init to perform this reboot.

Internal name: cc_ubuntu_pro

Module frequency: once-per-instance

Supported distros: ubuntu

Activate only on keys: ubuntu_pro, ubuntu-advantage, ubuntu_advantage

Config schema

• ubuntu_pro: (object)

– enable: (array of string) Optional list of Ubuntu Pro services to enable. Any of: cc-eal, cis, esm-infra, fips,
fips-updates, livepatch. By default, a given contract token will automatically enable a number of services,
use this list to supplement which services should additionally be enabled. Any service unavailable on a
given Ubuntu release or unentitled in a given contract will remain disabled. In Ubuntu Pro instances, if this
list is given, then only those services will be enabled, ignoring contract defaults. Passing beta services here
will cause an error.

– enable_beta: (array of string) Optional list of Ubuntu Pro beta services to enable. By default, a given
contract token will automatically enable a number of services, use this list to supplement which services
should additionally be enabled. Any service unavailable on a given Ubuntu release or unentitled in a given
contract will remain disabled. In Ubuntu Pro instances, if this list is given, then only those services will be
enabled, ignoring contract defaults.

– token: (string) Contract token obtained from https://ubuntu.com/pro to attach. Required for non-Pro in-
stances.

– features: (object) Ubuntu Pro features.

∗ disable_auto_attach: (boolean) Optional boolean for controlling if ua-auto-attach.service (in Ubuntu
Pro instances) will be attempted each boot. Default: false

– config: (object) Configuration settings or override Ubuntu Pro config.

∗ http_proxy: (string/null) Ubuntu Pro HTTP Proxy URL or null to unset.

∗ https_proxy: (string/null) Ubuntu Pro HTTPS Proxy URL or null to unset.

∗ global_apt_http_proxy: (string/null) HTTP Proxy URL used for all APT repositories on a system or
null to unset. Stored at /etc/apt/apt.conf.d/90ubuntu-advantage-aptproxy

∗ global_apt_https_proxy: (string/null) HTTPS Proxy URL used for all APT repositories on a system
or null to unset. Stored at /etc/apt/apt.conf.d/90ubuntu-advantage-aptproxy

∗ ua_apt_http_proxy: (string/null) HTTP Proxy URL used only for Ubuntu Pro APT repositories or
null to unset. Stored at /etc/apt/apt.conf.d/90ubuntu-advantage-aptproxy

142 Chapter 2. Project and community

https://ubuntu.com/pro

cloud-init, Release 24.1.3

∗ ua_apt_https_proxy: (string/null) HTTPS Proxy URL used only for Ubuntu Pro APT repositories or
null to unset. Stored at /etc/apt/apt.conf.d/90ubuntu-advantage-aptproxy

• ubuntu_advantage: (object)

Deprecated in version 24.1. Use ``ubuntu_pro`` instead.

– enable: (array of string) Optional list of Ubuntu Pro services to enable. Any of: cc-eal, cis, esm-infra, fips,
fips-updates, livepatch. By default, a given contract token will automatically enable a number of services,
use this list to supplement which services should additionally be enabled. Any service unavailable on a
given Ubuntu release or unentitled in a given contract will remain disabled. In Ubuntu Pro instances, if this
list is given, then only those services will be enabled, ignoring contract defaults. Passing beta services here
will cause an error.

– enable_beta: (array of string) Optional list of Ubuntu Pro beta services to enable. By default, a given
contract token will automatically enable a number of services, use this list to supplement which services
should additionally be enabled. Any service unavailable on a given Ubuntu release or unentitled in a given
contract will remain disabled. In Ubuntu Pro instances, if this list is given, then only those services will be
enabled, ignoring contract defaults.

– token: (string) Contract token obtained from https://ubuntu.com/pro to attach. Required for non-Pro in-
stances.

– features: (object) Ubuntu Pro features.

∗ disable_auto_attach: (boolean) Optional boolean for controlling if ua-auto-attach.service (in Ubuntu
Pro instances) will be attempted each boot. Default: false

– config: (object) Configuration settings or override Ubuntu Pro config.

∗ http_proxy: (string/null) Ubuntu Pro HTTP Proxy URL or null to unset.

∗ https_proxy: (string/null) Ubuntu Pro HTTPS Proxy URL or null to unset.

∗ global_apt_http_proxy: (string/null) HTTP Proxy URL used for all APT repositories on a system or
null to unset. Stored at /etc/apt/apt.conf.d/90ubuntu-advantage-aptproxy

∗ global_apt_https_proxy: (string/null) HTTPS Proxy URL used for all APT repositories on a system
or null to unset. Stored at /etc/apt/apt.conf.d/90ubuntu-advantage-aptproxy

∗ ua_apt_http_proxy: (string/null) HTTP Proxy URL used only for Ubuntu Pro APT repositories or
null to unset. Stored at /etc/apt/apt.conf.d/90ubuntu-advantage-aptproxy

∗ ua_apt_https_proxy: (string/null) HTTPS Proxy URL used only for Ubuntu Pro APT repositories or
null to unset. Stored at /etc/apt/apt.conf.d/90ubuntu-advantage-aptproxy

Examples

--- Example1 ---

Attach the machine to an Ubuntu Pro support contract with a
Pro contract token obtained from https://ubuntu.com/pro.
ubuntu_pro:
token: <ubuntu_pro_token>

--- Example2 ---

Attach the machine to an Ubuntu Pro support contract enabling
only fips and esm services. Services will only be enabled if

(continues on next page)

2.4. Reference 143

https://ubuntu.com/pro

cloud-init, Release 24.1.3

(continued from previous page)

the environment supports said service. Otherwise warnings will
be logged for incompatible services specified.
ubuntu_pro:
token: <ubuntu_pro_token>
enable:
- fips
- esm

--- Example3 ---

Attach the machine to an Ubuntu Pro support contract and enable
the FIPS service. Perform a reboot once cloud-init has
completed.
power_state:
mode: reboot

ubuntu_pro:
token: <ubuntu_pro_token>
enable:
- fips

--- Example4 ---

Set a http(s) proxy before attaching the machine to an
Ubuntu Pro support contract and enabling the FIPS service.
ubuntu_pro:
token: <ubuntu_pro_token>
config:
http_proxy: 'http://some-proxy:8088'
https_proxy: 'https://some-proxy:8088'
global_apt_https_proxy: 'https://some-global-apt-proxy:8088/'
global_apt_http_proxy: 'http://some-global-apt-proxy:8088/'
ua_apt_http_proxy: 'http://10.0.10.10:3128'
ua_apt_https_proxy: 'https://10.0.10.10:3128'

enable:
- fips

--- Example5 ---

On Ubuntu PRO instances, auto-attach but enable no PRO services.
ubuntu_pro:
enable: []
enable_beta: []

--- Example6 ---

Enable esm and beta realtime-kernel services in Ubuntu Pro instances.
ubuntu_pro:
enable:
- esm
enable_beta:
- realtime-kernel

(continues on next page)

144 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

--- Example7 ---

Disable auto-attach in Ubuntu Pro instances.
ubuntu_pro:
features:
disable_auto_attach: True

Update Etc Hosts

Update the hosts file (usually /etc/hosts)

Summary

This module will update the contents of the local hosts database (hosts file; usually /etc/hosts) based on the host-
name/fqdn specified in config. Management of the hosts file is controlled using manage_etc_hosts. If this is set to
false, cloud-init will not manage the hosts file at all. This is the default behavior.

If set to true, cloud-init will generate the hosts file using the template located in /etc/cloud/templates/hosts.
tmpl. In the /etc/cloud/templates/hosts.tmpl template, the strings $hostname and $fqdn will be replaced
with the hostname and fqdn respectively.

If manage_etc_hosts is set to localhost, then cloud-init will not rewrite the hosts file entirely, but rather will ensure
that a entry for the fqdn with a distribution dependent ip is present (i.e. ping <hostname> will ping 127.0.0.1 or
127.0.1.1 or other ip).

Note: if manage_etc_hosts is set true, the contents of the hosts file will be updated every boot. To make any
changes to the hosts file persistent they must be made in /etc/cloud/templates/hosts.tmpl

Note: for instructions on specifying hostname and fqdn, see documentation for cc_set_hostname

Internal name: cc_update_etc_hosts

Module frequency: always

Supported distros: all

Activate only on keys: manage_etc_hosts

Config schema

• manage_etc_hosts: (true/false/localhost/template) Whether to manage /etc/hosts on the system. If
true, render the hosts file using /etc/cloud/templates/hosts.tmpl replacing $hostname and $fdqn. If
localhost, append a 127.0.1.1 entry that resolves from FQDN and hostname every boot. Default: false.

Changed in version 22.3. Use of ``template`` is deprecated, use ``true`` instead.

• fqdn: (string) Optional fully qualified domain name to use when updating /etc/hosts. Preferred over
hostname if both are provided. In absence of hostname and fqdn in cloud-config, the local-hostname value
will be used from datasource metadata.

2.4. Reference 145

cloud-init, Release 24.1.3

• hostname: (string) Hostname to set when rendering /etc/hosts. If fqdn is set, the hostname extracted from
fqdn overrides hostname.

Examples

--- Example1 ---

Do not update or manage /etc/hosts at all. This is the default behavior.
#
Whatever is present at instance boot time will be present after boot.
User changes will not be overwritten.
manage_etc_hosts: false

--- Example2 ---

Manage /etc/hosts with cloud-init.
On every boot, /etc/hosts will be re-written from
``/etc/cloud/templates/hosts.tmpl``.
#
The strings '$hostname' and '$fqdn' are replaced in the template
with the appropriate values either from the config-config ``fqdn`` or
``hostname`` if provided. When absent, the cloud metadata will be
checked for ``local-hostname` which can be split into <hostname>.<fqdn>.
#
To make modifications persistent across a reboot, you must modify
``/etc/cloud/templates/hosts.tmpl``.
manage_etc_hosts: true

--- Example3 ---

Update /etc/hosts every boot providing a "localhost" 127.0.1.1 entry
with the latest hostname and fqdn as provided by either IMDS or
cloud-config.
All other entries will be left as is.
'ping `hostname`' will ping 127.0.1.1
manage_etc_hosts: localhost

Update Hostname

Update hostname and fqdn

146 Chapter 2. Project and community

cloud-init, Release 24.1.3

Summary

This module will update the system hostname and fqdn. If preserve_hostname is set true, then the hostname will
not be altered.

Note: for instructions on specifying hostname and fqdn, see documentation for cc_set_hostname

Internal name: cc_update_hostname

Module frequency: always

Supported distros: all

Config schema

• preserve_hostname: (boolean) Do not update system hostname when true. Default: false.

• prefer_fqdn_over_hostname: (boolean) By default, it is distro-dependent whether cloud-init uses the short
hostname or fully qualified domain name when both local-hostname` and ``fqdn are both present in in-
stance metadata. When set true, use fully qualified domain name if present as hostname instead of short host-
name. When set false, use hostname config value if present, otherwise fallback to fqdn.

• create_hostname_file: (boolean) If false, the hostname file (e.g. /etc/hostname) will not be created if it does
not exist. On systems that use systemd, setting create_hostname_file to false will set the hostname transiently.
If true, the hostname file will always be created and the hostname will be set statically on systemd systems.
Default: true

Examples

--- Example1 ---

By default: when ``preserve_hostname`` is not specified cloud-init
updates ``/etc/hostname`` per-boot based on the cloud provided
``local-hostname`` setting. If you manually change ``/etc/hostname``
after boot cloud-init will no longer modify it.
#
This default cloud-init behavior is equivalent to this cloud-config:
preserve_hostname: false

--- Example2 ---

Prevent cloud-init from updating the system hostname.
preserve_hostname: true

--- Example3 ---

Prevent cloud-init from updating ``/etc/hostname``
preserve_hostname: true

--- Example4 ---

Set hostname to "external.fqdn.me" instead of "myhost"
(continues on next page)

2.4. Reference 147

cloud-init, Release 24.1.3

(continued from previous page)

fqdn: external.fqdn.me
hostname: myhost
prefer_fqdn_over_hostname: true
create_hostname_file: true

--- Example5 ---

Set hostname to "external" instead of "external.fqdn.me" when
cloud metadata provides the ``local-hostname``: "external.fqdn.me".
prefer_fqdn_over_hostname: false

--- Example6 ---

On a machine without an ``/etc/hostname`` file, don't create it
In most clouds, this will result in a DHCP-configured hostname
provided by the cloud
create_hostname_file: false

Users and Groups

Configure users and groups

Summary

This module configures users and groups. For more detailed information on user options, see the Including users and
groups config example.

Groups to add to the system can be specified under the groups key as a string of comma-separated groups to create,
or a list. Each item in the list should either contain a string of a single group to create, or a dictionary with the group
name as the key and string of a single user as a member of that group or a list of users who should be members of the
group.

Note: Groups are added before users, so any users in a group list must already exist on the system.

Users to add can be specified as a string or list under the users key. Each entry in the list should either be a string
or a dictionary. If a string is specified, that string can be comma-separated usernames to create or the reserved string
default which represents the primary admin user used to access the system. The default user varies per distribution
and is generally configured in /etc/cloud/cloud.cfg by the default_user key.

Each users dictionary item must contain either a name or snapuser key, otherwise it will be ignored. Omission of
default as the first item in the users list skips creation the default user. If no users key is provided the default
behavior is to create the default user via this config:

users:
- default

Note: Specifying a hash of a user’s password with passwd is a security risk if the cloud-config can be intercepted.
SSH authentication is preferred.

148 Chapter 2. Project and community

cloud-init, Release 24.1.3

Note: If specifying a doas rule for a user, ensure that the syntax for the rule is valid, as the only checking performed
by cloud-init is to ensure that the user referenced in the rule is the correct user.

Note: If specifying a sudo rule for a user, ensure that the syntax for the rule is valid, as it is not checked by cloud-init.

Note: Most of these configuration options will not be honored if the user already exists. The following options are the
exceptions; they are applied to already-existing users: plain_text_passwd, doas, hashed_passwd, lock_passwd,
sudo, ssh_authorized_keys, ssh_redirect_user.

The user key can be used to override the default_user configuration defined in /etc/cloud/cloud.cfg. The
user value should be a dictionary which supports the same config keys as the users dictionary items.

Internal name: cc_users_groups

Module frequency: once-per-instance

Supported distros: all

Config schema

• groups: (string/object/array of (string/object))

– Each object in groups list supports the following keys:

– <group_name>: (string/array of string) Optional string of single username or a list of usernames to add
to the group

• user: (string/object) The user dictionary values override the default_user configuration from /etc/cloud/
cloud.cfg. The user dictionary keys supported for the default_user are the same as the users schema.

• users: (string/object/array of (string/array of string/object))

– Each object in users list supports the following keys:

– name: (string) The user’s login name. Required otherwise user creation will be skipped for this user.

– doas: (array of string) List of doas rules to add for a user. doas or opendoas must be installed for rules to
take effect.

– expiredate: (string) Optional. Date on which the user’s account will be disabled. Default: null

– gecos: (string) Optional comment about the user, usually a comma-separated string of real name and contact
information

– groups: (string/object/array) Optional comma-separated string of groups to add the user to.

– homedir: (string) Optional home dir for user. Default: /home/<username>

– inactive: (string) Optional string representing the number of days until the user is disabled.

– lock-passwd: (boolean) Default: true

Deprecated in version 22.3. Use ``lock_passwd`` instead.

– lock_passwd: (boolean) Disable password login. Default: true

– no_create_home: (boolean) Do not create home directory. Default: false

– no_log_init: (boolean) Do not initialize lastlog and faillog for user. Default: false

2.4. Reference 149

cloud-init, Release 24.1.3

– no_user_group: (boolean) Do not create group named after user. Default: false

– passwd: (string) Hash of user password applied when user does not exist. This will NOT be applied if
the user already exists. To generate this hash, run: mkpasswd --method=SHA-512 --rounds=500000
Note: Your password might possibly be visible to unprivileged users on your system, depending on your
cloud’s security model. Check if your cloud’s IMDS server is visible from an unprivileged user to evaluate
risk.

– hashed_passwd: (string) Hash of user password to be applied. This will be applied even if the user is
preexisting. To generate this hash, run: mkpasswd --method=SHA-512 --rounds=500000. Note: Your
password might possibly be visible to unprivileged users on your system, depending on your cloud’s security
model. Check if your cloud’s IMDS server is visible from an unprivileged user to evaluate risk.

– plain_text_passwd: (string) Clear text of user password to be applied. This will be applied even if the user
is preexisting. Note: SSH keys or certificates are a safer choice for logging in to your system. For local
escalation, supplying a hashed password is a safer choice than plain text. Your password might possibly
be visible to unprivileged users on your system, depending on your cloud’s security model. An exposed
plain text password is an immediate security concern. Check if your cloud’s IMDS server is visible from
an unprivileged user to evaluate risk.

– create_groups: (boolean) Boolean set false to disable creation of specified user groups. Default: true.

– primary_group: (string) Primary group for user. Default: <username>

– selinux_user: (string) SELinux user for user’s login. Default: the default SELinux user.

– shell: (string) Path to the user’s login shell. Default: the host system’s default shell.

– snapuser: (string) Specify an email address to create the user as a Snappy user through snap
create-user. If an Ubuntu SSO account is associated with the address, username and SSH keys will
be requested from there.

– ssh_authorized_keys: (array of string) List of SSH keys to add to user’s authkeys file. Can not be combined
with ssh_redirect_user

– ssh-authorized-keys: (array of string)

Deprecated in version 18.3. Use ``ssh_authorized_keys`` instead.

– ssh_import_id: (array of string) List of ssh ids to import for user. Can not be combined with
ssh_redirect_user. See the man page[1] for more details. [1] https://manpages.ubuntu.com/manpages/
noble/en/man1/ssh-import-id.1.html

– ssh_redirect_user: (boolean) Boolean set to true to disable SSH logins for this user. When specified, all
cloud meta-data public SSH keys will be set up in a disabled state for this username. Any SSH login as this
username will timeout and prompt with a message to login instead as the default_username for this in-
stance. Default: false. This key can not be combined with ssh_import_id or ssh_authorized_keys.

– system: (boolean) Optional. Create user as system user with no home directory. Default: false.

– sudo: (string/null/boolean) Sudo rule to use or false. Absence of a sudo value or null will result in no
sudo rules added for this user..

Changed in version 22.2. The value ``false`` is deprecated for this key, use ``null`` instead.

– uid: (integer/string) The user’s ID. Default value [system default].

Changed in version 22.3. The use of ``string`` type is deprecated. Use an ``integer`` instead.

150 Chapter 2. Project and community

https://manpages.ubuntu.com/manpages/noble/en/man1/ssh-import-id.1.html
https://manpages.ubuntu.com/manpages/noble/en/man1/ssh-import-id.1.html

cloud-init, Release 24.1.3

Examples

--- Example1 ---

Add the ``default_user`` from /etc/cloud/cloud.cfg.
This is also the default behavior of cloud-init when no `users` key
is provided.
users:
- default

--- Example2 ---

Add the 'admingroup' with members 'root' and 'sys' and an empty
group cloud-users.
groups:
- admingroup: [root,sys]
- cloud-users

--- Example3 ---

Skip creation of the <default> user and only create newsuper.
Password-based login is rejected, but the github user TheRealFalcon
and the launchpad user falcojr can SSH as newsuper. The default
shell for newsuper is bash instead of system default.
users:
- name: newsuper
gecos: Big Stuff
groups: users, admin
sudo: ALL=(ALL) NOPASSWD:ALL
shell: /bin/bash
lock_passwd: true
ssh_import_id:
- lp:falcojr
- gh:TheRealFalcon

--- Example4 ---

Skip creation of the <default> user and only create newsuper.
Password-based login is rejected, but the github user TheRealFalcon
and the launchpad user falcojr can SSH as newsuper. doas/opendoas
is configured to permit this user to run commands as other users
(without being prompted for a password) except not as root.
users:
- name: newsuper
gecos: Big Stuff
groups: users, admin
doas:
- permit nopass newsuper
- deny newsuper as root

lock_passwd: true
ssh_import_id:
- lp:falcojr
- gh:TheRealFalcon

(continues on next page)

2.4. Reference 151

cloud-init, Release 24.1.3

(continued from previous page)

--- Example5 ---

On a system with SELinux enabled, add youruser and set the
SELinux user to 'staff_u'. When omitted on SELinux, the system will
select the configured default SELinux user.
users:
- default
- name: youruser
selinux_user: staff_u

--- Example6 ---

To redirect a legacy username to the <default> user for a
distribution, ssh_redirect_user will accept an SSH connection and
emit a message telling the client to ssh as the <default> user.
SSH clients will get the message:
users:
- default
- name: nosshlogins
ssh_redirect_user: true

--- Example7 ---

Override any ``default_user`` config in /etc/cloud/cloud.cfg with
supplemental config options.
This config will make the default user to mynewdefault and change
the user to not have sudo rights.
ssh_import_id: [chad.smith]
user:
name: mynewdefault
sudo: null

--- Example8 ---

Avoid creating any ``default_user``.
users: []

Wireguard

Module to configure Wireguard tunnel

152 Chapter 2. Project and community

cloud-init, Release 24.1.3

Summary

Wireguard module provides a dynamic interface for configuring Wireguard (as a peer or server) in an easy way.

This module takes care of:

• writing interface configuration files

• enabling and starting interfaces

• installing wireguard-tools package

• loading wireguard kernel module

• executing readiness probes

What’s a readiness probe?

The idea behind readiness probes is to ensure Wireguard connectivity before continuing the cloud-init process. This
could be useful if you need access to specific services like an internal APT Repository Server (e.g Landscape) to
install/update packages.

Example:

An edge device can’t access the internet but uses cloud-init modules which will install packages (e.g landscape, pack-
ages, ubuntu_advantage). Those modules will fail due to missing internet connection. The “wireguard” module fixes
that problem as it waits until all readinessprobes (which can be arbitrary commands - e.g. checking if a proxy server is
reachable over Wireguard network) are finished before continuing the cloud-init “config” stage.

Note: In order to use DNS with Wireguard you have to install resolvconf package or symlink it to systemd’s
resolvectl, otherwise wg-quick commands will throw an error message that executable resolvconf is missing
which leads wireguard module to fail.

Internal name: cc_wireguard

Module frequency: once-per-instance

Supported distros: ubuntu

Activate only on keys: wireguard

Config schema

• wireguard: (null/object)

– interfaces: (array of object)

∗ Each object in interfaces list supports the following keys:

∗ name: (string) Name of the interface. Typically wgx (example: wg0)

∗ config_path: (string) Path to configuration file of Wireguard interface

∗ content: (string) Wireguard interface configuration. Contains key, peer, . . .

– readinessprobe: (array of string) List of shell commands to be executed as probes.

2.4. Reference 153

cloud-init, Release 24.1.3

Examples

--- Example1 ---

Configure one or more WG interfaces and provide optional readinessprobes
wireguard:
interfaces:
- name: wg0
config_path: /etc/wireguard/wg0.conf
content: |
[Interface]
PrivateKey = <private_key>
Address = <address>
[Peer]
PublicKey = <public_key>
Endpoint = <endpoint_ip>:<endpoint_ip_port>
AllowedIPs = <allowedip1>, <allowedip2>, ...

- name: wg1
config_path: /etc/wireguard/wg1.conf
content: |

[Interface]
PrivateKey = <private_key>
Address = <address>
[Peer]
PublicKey = <public_key>
Endpoint = <endpoint_ip>:<endpoint_ip_port>
AllowedIPs = <allowedip1>

readinessprobe:
- 'systemctl restart service'
- 'curl https://webhook.endpoint/example'
- 'nc -zv some-service-fqdn 443'

Write Files

write arbitrary files

Summary

Write out arbitrary content to files, optionally setting permissions. Parent folders in the path are created if
absent. Content can be specified in plain text or binary. Data encoded with either base64 or binary gzip
data can be specified and will be decoded before being written. For empty file creation, content can be
omitted.

Note: If multiline data is provided, care should be taken to ensure that it follows yaml formatting standards. To specify
binary data, use the yaml option !!binary

Note: Do not write files under /tmp during boot because of a race with systemd-tmpfiles-clean that can cause temp
files to get cleaned during the early boot process. Use /run/somedir instead to avoid race LP:1707222.

154 Chapter 2. Project and community

cloud-init, Release 24.1.3

Warning: Existing files will be overridden.

Internal name: cc_write_files

Module frequency: once-per-instance

Supported distros: all

Activate only on keys: write_files

Config schema

• write_files: (array of object)

– Each object in write_files list supports the following keys:

– path: (string) Path of the file to which content is decoded and written

– content: (string) Optional content to write to the provided path. When content is present and encoding is
not ‘text/plain’, decode the content prior to writing. Default: ''

– owner: (string) Optional owner:group to chown on the file and new directories. Default: root:root

– permissions: (string) Optional file permissions to set on path represented as an octal string ‘0###’. De-
fault: 0o644

– encoding: (gz/gzip/gz+base64/gzip+base64/gz+b64/gzip+b64/b64/base64/text/plain) Op-
tional encoding type of the content. Default: text/plain. No decoding is performed by default.
Supported encoding types are: gz, gzip, gz+base64, gzip+base64, gz+b64, gzip+b64, b64, base64

– append: (boolean) Whether to append content to existing file if path exists. Default: false.

– defer: (boolean) Defer writing the file until ‘final’ stage, after users were created, and packages were
installed. Default: false.

Examples

--- Example1 ---

Write out base64 encoded content to /etc/sysconfig/selinux
write_files:
- encoding: b64
content: CiMgVGhpcyBmaWxlIGNvbnRyb2xzIHRoZSBzdGF0ZSBvZiBTRUxpbnV4...
owner: root:root
path: /etc/sysconfig/selinux
permissions: '0644'

--- Example2 ---

Appending content to an existing file
write_files:
- content: |

15 * * * * root ship_logs
path: /etc/crontab
append: true

(continues on next page)

2.4. Reference 155

cloud-init, Release 24.1.3

(continued from previous page)

--- Example3 ---

Provide gzipped binary content
write_files:
- encoding: gzip
content: !!binary |

H4sIAIDb/U8C/1NW1E/KzNMvzuBKTc7IV8hIzcnJVyjPL8pJ4QIA6N+MVxsAAAA=
path: /usr/bin/hello
permissions: '0755'

--- Example4 ---

Create an empty file on the system
write_files:
- path: /root/CLOUD_INIT_WAS_HERE

--- Example5 ---

Defer writing the file until after the package (Nginx) is
installed and its user is created alongside
write_files:
- path: /etc/nginx/conf.d/example.com.conf
content: |
server {

server_name example.com;
listen 80;
root /var/www;
location / {

try_files $uri $uri/ $uri.html =404;
}

}
owner: 'nginx:nginx'
permissions: '0640'
defer: true

Yum Add Repo

Add yum repository configuration to the system

Summary

Add yum repository configuration to /etc/yum.repos.d. Configuration files are named based on the opaque dictio-
nary key under the yum_repos they are specified with. If a config file already exists with the same name as a config
entry, the config entry will be skipped.

Internal name: cc_yum_add_repo

Module frequency: once-per-instance

Supported distros: almalinux, azurelinux, centos, cloudlinux, eurolinux, fedora, mariner, openeuler, OpenCloudOS,
openmandriva, photon, rhel, rocky, TencentOS, virtuozzo

Activate only on keys: yum_repos

156 Chapter 2. Project and community

cloud-init, Release 24.1.3

Config schema

• yum_repo_dir: (string) The repo parts directory where individual yum repo config files will be written. Default:
/etc/yum.repos.d

• yum_repos: (object)

– <repo_name>: (object) Object keyed on unique yum repo IDs. The key used will be used to write yum
repo config files in yum_repo_dir/<repo_key_id>.repo.

∗ baseurl: (string) URL to the directory where the yum repository’s ‘repodata’ directory lives

∗ name: (string) Optional human-readable name of the yum repo.

∗ enabled: (boolean) Whether to enable the repo. Default: true.

∗ <yum_config_option>: (integer/boolean/string) Any supported yum repository configuration options
will be written to the yum repo config file. See: man yum.conf

Examples

--- Example1 ---

yum_repos:
my_repo:
baseurl: http://blah.org/pub/epel/testing/5/$basearch/

yum_repo_dir: /store/custom/yum.repos.d

--- Example2 ---

Enable cloud-init upstream's daily testing repo for EPEL 8 to
install latest cloud-init from tip of `main` for testing.
yum_repos:
cloud-init-daily:
name: Copr repo for cloud-init-dev owned by @cloud-init
baseurl: https://download.copr.fedorainfracloud.org/results/@cloud-init/cloud-init-

→˓dev/epel-8-$basearch/
type: rpm-md
skip_if_unavailable: true
gpgcheck: true
gpgkey: https://download.copr.fedorainfracloud.org/results/@cloud-init/cloud-init-

→˓dev/pubkey.gpg
enabled_metadata: 1

--- Example3 ---

Add the file /etc/yum.repos.d/epel_testing.repo which can then
subsequently be used by yum for later operations.
yum_repos:
The name of the repository
epel-testing:
baseurl: https://download.copr.fedorainfracloud.org/results/@cloud-init/cloud-init-

→˓dev/pubkey.gpg
enabled: false
failovermethod: priority

(continues on next page)

2.4. Reference 157

cloud-init, Release 24.1.3

(continued from previous page)

gpgcheck: true
gpgkey: file:///etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL
name: Extra Packages for Enterprise Linux 5 - Testing

--- Example4 ---

Any yum repo configuration can be passed directly into
the repository file created. See: man yum.conf for supported
config keys.
#
Write /etc/yum.conf.d/my-package-stream.repo with gpgkey checks
on the repo data of the repository enabled.
yum_repos:
my package stream:
baseurl: http://blah.org/pub/epel/testing/5/$basearch/
mirrorlist: http://some-url-to-list-of-baseurls
repo_gpgcheck: 1
enable_gpgcheck: true
gpgkey: https://url.to.ascii-armored-gpg-key

Zypper Add Repo

Configure zypper behavior and add zypper repositories

Summary

Zypper behavior can be configured using the config key, which will modify /etc/zypp/zypp.conf. The configu-
ration writer will only append the provided configuration options to the configuration file. Any duplicate options will
be resolved by the way the zypp.conf INI file is parsed.

Note: Setting configdir is not supported and will be skipped.

The repos key may be used to add repositories to the system. Beyond the required id and baseurl attributions, no
validation is performed on the repos entries. It is assumed the user is familiar with the zypper repository file format.
This configuration is also applicable for systems with transactional-updates.

Internal name: cc_zypper_add_repo

Module frequency: always

Supported distros: opensuse, opensuse-microos, opensuse-tumbleweed, opensuse-leap, sle_hpc, sle-micro, sles

Activate only on keys: zypper

158 Chapter 2. Project and community

cloud-init, Release 24.1.3

Config schema

• zypper: (object)

– repos: (array of object)

∗ Each object in repos list supports the following keys:

∗ id: (string) The unique id of the repo, used when writing /etc/zypp/repos.d/<id>.repo.

∗ baseurl: (string) The base repositoy URL

– config: (object) Any supported zypo.conf key is written to /etc/zypp/zypp.conf

Examples

--- Example1 ---

zypper:
repos:
- id: opensuse-oss
name: os-oss
baseurl: http://dl.opensuse.org/dist/leap/v/repo/oss/
enabled: 1
autorefresh: 1

- id: opensuse-oss-update
name: os-oss-up
baseurl: http://dl.opensuse.org/dist/leap/v/update
any setting per
https://en.opensuse.org/openSUSE:Standards_RepoInfo
enable and autorefresh are on by default

config:
reposdir: /etc/zypp/repos.dir
servicesdir: /etc/zypp/services.d
download.use_deltarpm: true
any setting in /etc/zypp/zypp.conf

2.4.2 Cloud config examples

Including users and groups

1 #cloud-config
2 # Add groups to the system
3 # The following example adds the 'admingroup' group with members 'root' and 'sys'
4 # and the empty group cloud-users.
5 groups:
6 - admingroup: [root,sys]
7 - cloud-users
8

9 # Add users to the system. Users are added after groups are added.
10 # Note: Most of these configuration options will not be honored if the user
11 # already exists. Following options are the exceptions and they are
12 # applicable on already-existing users:

(continues on next page)

2.4. Reference 159

cloud-init, Release 24.1.3

(continued from previous page)

13 # - 'plain_text_passwd', 'hashed_passwd', 'lock_passwd', 'sudo',
14 # 'ssh_authorized_keys', 'ssh_redirect_user'.
15 users:
16 - default
17 - name: foobar
18 gecos: Foo B. Bar
19 primary_group: foobar
20 groups: users
21 selinux_user: staff_u
22 expiredate: '2032-09-01'
23 ssh_import_id:
24 - lp:falcojr
25 - gh:TheRealFalcon
26 lock_passwd: false
27 passwd: 6j212wezy$7H/1LT4f9/N3wpgNunhsIqtMj62OKiS3nyNwuizouQc3u7MbYCarYeAHWYPYb2FT.

→˓lbioDm2RrkJPb9BZMN1O/
28 - name: barfoo
29 gecos: Bar B. Foo
30 sudo: ALL=(ALL) NOPASSWD:ALL
31 groups: users, admin
32 ssh_import_id:
33 - lp:falcojr
34 - gh:TheRealFalcon
35 lock_passwd: true
36 ssh_authorized_keys:
37 - ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDSL7uWGj8cgWyIOaspgKdVy0cKJ+UTjfv7jBOjG2H/

→˓GN8bJVXy72XAvnhM0dUM+CCs8FOf0YlPX+Frvz2hKInrmRhZVwRSL129PasD12MlI3l44u6IwS1o/
→˓W86Q+tkQYEljtqDOo0a+cOsaZkvUNzUyEXUwz/
→˓lmYa6G4hMKZH4NBj7nbAAF96wsMCoyNwbWryBnDYUr6wMbjRR1J9Pw7Xh7WRC73wy4Va2YuOgbD3V/
→˓5ZrFPLbWZW/7TFXVrql04QVbyei4aiFR5n//GvoqwQDNe58LmbzX/xvxyKJYdny2zXmdAhMxbrpFQsfpkJ9E/
→˓H5w0yOdSvnWbUoG5xNGoOB csmith@fringe

38 - name: cloudy
39 gecos: Magic Cloud App Daemon User
40 inactive: '5'
41 system: true
42 - name: fizzbuzz
43 sudo: false
44 shell: /bin/bash
45 ssh_authorized_keys:
46 - ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDSL7uWGj8cgWyIOaspgKdVy0cKJ+UTjfv7jBOjG2H/

→˓GN8bJVXy72XAvnhM0dUM+CCs8FOf0YlPX+Frvz2hKInrmRhZVwRSL129PasD12MlI3l44u6IwS1o/
→˓W86Q+tkQYEljtqDOo0a+cOsaZkvUNzUyEXUwz/
→˓lmYa6G4hMKZH4NBj7nbAAF96wsMCoyNwbWryBnDYUr6wMbjRR1J9Pw7Xh7WRC73wy4Va2YuOgbD3V/
→˓5ZrFPLbWZW/7TFXVrql04QVbyei4aiFR5n//GvoqwQDNe58LmbzX/xvxyKJYdny2zXmdAhMxbrpFQsfpkJ9E/
→˓H5w0yOdSvnWbUoG5xNGoOB csmith@fringe

47 - snapuser: joe@joeuser.io
48 - name: nosshlogins
49 ssh_redirect_user: true
50

51 # Valid Values:
52 # name: The user's login name
53 # expiredate: Date on which the user's account will be disabled.

(continues on next page)

160 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

54 # gecos: The user name's real name, i.e. "Bob B. Smith"
55 # homedir: Optional. Set to the local path you want to use. Defaults to
56 # /home/<username>
57 # primary_group: define the primary group. Defaults to a new group created
58 # named after the user.
59 # groups: Optional. Additional groups to add the user to. Defaults to none
60 # selinux_user: Optional. The SELinux user for the user's login, such as
61 # "staff_u". When this is omitted the system will select the default
62 # SELinux user.
63 # lock_passwd: Defaults to true. Lock the password to disable password login
64 # inactive: Number of days after password expires until account is disabled
65 # passwd: The hash -- not the password itself -- of the password you want
66 # to use for this user. You can generate a hash via:
67 # mkpasswd --method=SHA-512 --rounds=4096
68 # (the above command would create from stdin an SHA-512 password hash
69 # with 4096 salt rounds)
70 #
71 # Please note: while the use of a hashed password is better than
72 # plain text, the use of this feature is not ideal. Also,
73 # using a high number of salting rounds will help, but it should
74 # not be relied upon.
75 #
76 # To highlight this risk, running John the Ripper against the
77 # example hash above, with a readily available wordlist, revealed
78 # the true password in 12 seconds on a i7-2620QM.
79 #
80 # In other words, this feature is a potential security risk and is
81 # provided for your convenience only. If you do not fully trust the
82 # medium over which your cloud-config will be transmitted, then you
83 # should not use this feature.
84 #
85 # no_create_home: When set to true, do not create home directory.
86 # no_user_group: When set to true, do not create a group named after the user.
87 # no_log_init: When set to true, do not initialize lastlog and faillog database.
88 # ssh_import_id: Optional. Import SSH ids
89 # ssh_authorized_keys: Optional. [list] Add keys to user's authorized keys file
90 # An error will be raised if no_create_home or system is
91 # also set.
92 # ssh_redirect_user: Optional. [bool] Set true to block ssh logins for cloud
93 # ssh public keys and emit a message redirecting logins to
94 # use <default_username> instead. This option only disables cloud
95 # provided public-keys. An error will be raised if ssh_authorized_keys
96 # or ssh_import_id is provided for the same user.
97 #
98 # sudo: Defaults to none. Accepts a sudo rule string, a list of sudo rule
99 # strings or False to explicitly deny sudo usage. Examples:

100 #
101 # Allow a user unrestricted sudo access.
102 # sudo: ALL=(ALL) NOPASSWD:ALL
103 #
104 # Adding multiple sudo rule strings.
105 # sudo:

(continues on next page)

2.4. Reference 161

cloud-init, Release 24.1.3

(continued from previous page)

106 # - ALL=(ALL) NOPASSWD:/bin/mysql
107 # - ALL=(ALL) ALL
108 #
109 # Prevent sudo access for a user.
110 # sudo: False
111 #
112 # Note: Please double check your syntax and make sure it is valid.
113 # cloud-init does not parse/check the syntax of the sudo
114 # directive.
115 # system: Create the user as a system user. This means no home directory.
116 # snapuser: Create a Snappy (Ubuntu-Core) user via the snap create-user
117 # command available on Ubuntu systems. If the user has an account
118 # on the Ubuntu SSO, specifying the email will allow snap to
119 # request a username and any public ssh keys and will import
120 # these into the system with username specified by SSO account.
121 # If 'username' is not set in SSO, then username will be the
122 # shortname before the email domain.
123 #
124

125 # Default user creation:
126 #
127 # Unless you define users, you will get a 'ubuntu' user on Ubuntu systems with the
128 # legacy permission (no password sudo, locked user, etc). If however, you want
129 # to have the 'ubuntu' user in addition to other users, you need to instruct
130 # cloud-init that you also want the default user. To do this use the following
131 # syntax:
132 # users:
133 # - default
134 # - bob
135 # -
136 # foobar: ...
137 #
138 # users[0] (the first user in users) overrides the user directive.
139 #
140 # The 'default' user above references the distro's config set in
141 # /etc/cloud/cloud.cfg.

Writing out arbitrary files

1 #cloud-config
2 # vim: syntax=yaml
3 #
4 # This is the configuration syntax that the write_files module
5 # will know how to understand. Encoding can be given b64 or gzip or (gz+b64).
6 # The content will be decoded accordingly and then written to the path that is
7 # provided.
8 #
9 # Note: Content strings here are truncated for example purposes.

10 write_files:
11 - encoding: b64

(continues on next page)

162 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

12 content: CiMgVGhpcyBmaWxlIGNvbnRyb2xzIHRoZSBzdGF0ZSBvZiBTRUxpbnV4...
13 owner: root:root
14 path: /etc/sysconfig/selinux
15 permissions: '0644'
16 - content: |
17 # My new /etc/sysconfig/samba file
18

19 SMBDOPTIONS="-D"
20 path: /etc/sysconfig/samba
21 - content: !!binary |
22 f0VMRgIBAQAAAAAAAAAAAAIAPgABAAAAwARAAAAAAABAAAAAAAAAAJAVAAAAAAAAAAAAAEAAOAAI
23 AEAAHgAdAAYAAAAFAAAAQAAAAAAAAABAAEAAAAAAAEAAQAAAAAAAwAEAAAAAAADAAQAAAAAAAAgA
24 AAAAAAAAAwAAAAQAAAAAAgAAAAAAAAACQAAAAAAAAAJAAAAAAAAcAAAAAAAAABwAAAAAAAAAAQAA
25
26 path: /bin/arch
27 permissions: '0555'
28 - encoding: gzip
29 content: !!binary |
30 H4sIAIDb/U8C/1NW1E/KzNMvzuBKTc7IV8hIzcnJVyjPL8pJ4QIA6N+MVxsAAAA=
31 path: /usr/bin/hello
32 permissions: '0755'

Adding a yum repository

1 #cloud-config
2 # vim: syntax=yaml
3 #
4 # Add yum repository configuration to the system
5 #
6 # The following example adds the file /etc/yum.repos.d/epel_testing.repo
7 # which can then subsequently be used by yum for later operations.
8 yum_repos:
9 # The name of the repository

10 epel-testing:
11 # Any repository configuration options
12 # See: man yum.conf
13 #
14 # This one is required!
15 baseurl: http://download.fedoraproject.org/pub/epel/testing/5/$basearch
16 enabled: false
17 failovermethod: priority
18 gpgcheck: true
19 gpgkey: file:///etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL
20 name: Extra Packages for Enterprise Linux 5 - Testing

2.4. Reference 163

cloud-init, Release 24.1.3

Configure an instance’s trusted CA certificates

1 #cloud-config
2 #
3 # This is an example file to configure an instance's trusted CA certificates
4 # system-wide for SSL/TLS trust establishment when the instance boots for the
5 # first time.
6 #
7 # Make sure that this file is valid yaml before starting instances.
8 # It should be passed as user-data when starting the instance.
9

10 ca_certs:
11 # If present and set to True, the 'remove_defaults' parameter will either
12 # disable all the trusted CA certifications normally shipped with
13 # Alpine, Debian or Ubuntu. On RedHat, this action will delete those
14 # certificates.
15 # This is mainly for very security-sensitive use cases - most users will not
16 # need this functionality.
17 remove_defaults: true
18

19 # If present, the 'trusted' parameter should contain a certificate (or list
20 # of certificates) to add to the system as trusted CA certificates.
21 # Pay close attention to the YAML multiline list syntax. The example shown
22 # here is for a list of multiline certificates.
23 trusted:
24 - |
25 -----BEGIN CERTIFICATE-----
26 YOUR-ORGS-TRUSTED-CA-CERT-HERE
27 -----END CERTIFICATE-----
28 - |
29 -----BEGIN CERTIFICATE-----
30 YOUR-ORGS-TRUSTED-CA-CERT-HERE
31 -----END CERTIFICATE-----

Install and run chef recipes

1 #cloud-config
2 #
3 # This is an example file to automatically install chef-client and run a
4 # list of recipes when the instance boots for the first time.
5 # Make sure that this file is valid yaml before starting instances.
6 # It should be passed as user-data when starting the instance.
7

8 # The default is to install from packages.
9

10 # Key from https://packages.chef.io/chef.asc
11 apt:
12 sources:
13 source1:
14 source: "deb http://packages.chef.io/repos/apt/stable $RELEASE main"
15 key: |

(continues on next page)

164 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

16 -----BEGIN PGP PUBLIC KEY BLOCK-----
17 Version: GnuPG v1.4.12 (Darwin)
18 Comment: GPGTools - http://gpgtools.org
19

20 mQGiBEppC7QRBADfsOkZU6KZK+YmKw4wev5mjKJEkVGlus+NxW8wItX5sGa6kdUu
21 twAyj7Yr92rF+ICFEP3gGU6+lGo0Nve7KxkN/1W7/m3G4zuk+ccIKmjp8KS3qn99
22 dxy64vcji9jIllVa+XXOGIp0G8GEaj7mbkixL/bMeGfdMlv8Gf2XPpp9vwCgn/GC
23 JKacfnw7MpLKUHOYSlb//JsEAJqao3ViNfav83jJKEkD8cf59Y8xKia5OpZqTK5W
24 ShVnNWS3U5IVQk10ZDH97Qn/YrK387H4CyhLE9mxPXs/ul18ioiaars/q2MEKU2I
25 XKfV21eMLO9LYd6Ny/Kqj8o5WQK2J6+NAhSwvthZcIEphcFignIuobP+B5wNFQpe
26 DbKfA/0WvN2OwFeWRcmmd3Hz7nHTpcnSF+4QX6yHRF/5BgxkG6IqBIACQbzPn6Hm
27 sMtm/SVf11izmDqSsQptCrOZILfLX/mE+YOl+CwWSHhl+YsFts1WOuh1EhQD26aO
28 Z84HuHV5HFRWjDLw9LriltBVQcXbpfSrRP5bdr7Wh8vhqJTPjrQnT3BzY29kZSBQ
29 YWNrYWdlcyA8cGFja2FnZXNAb3BzY29kZS5jb20+iGAEExECACAFAkppC7QCGwMG
30 CwkIBwMCBBUCCAMEFgIDAQIeAQIXgAAKCRApQKupg++Caj8sAKCOXmdG36gWji/K
31 +o+XtBfvdMnFYQCfTCEWxRy2BnzLoBBFCjDSK6sJqCu0IENIRUYgUGFja2FnZXMg
32 PHBhY2thZ2VzQGNoZWYuaW8+iGIEExECACIFAlQwYFECGwMGCwkIBwMCBhUIAgkK
33 CwQWAgMBAh4BAheAAAoJEClAq6mD74JqX94An26z99XOHWpLN8ahzm7cp13t4Xid
34 AJ9wVcgoUBzvgg91lKfv/34cmemZn7kCDQRKaQu0EAgAg7ZLCVGVTmLqBM6njZEd
35 Zbv+mZbvwLBSomdiqddE6u3eH0X3GuwaQfQWHUVG2yedyDMiG+EMtCdEeeRebTCz
36 SNXQ8Xvi22hRPoEsBSwWLZI8/XNg0n0f1+GEr+mOKO0BxDB2DG7DA0nnEISxwFkK
37 OFJFebR3fRsrWjj0KjDxkhse2ddU/jVz1BY7Nf8toZmwpBmdozETMOTx3LJy1HZ/
38 Te9FJXJMUaB2lRyluv15MVWCKQJro4MQG/7QGcIfrIZNfAGJ32DDSjV7/YO+IpRY
39 IL4CUBQ65suY4gYUG4jhRH6u7H1p99sdwsg5OIpBe/v2Vbc/tbwAB+eJJAp89Zeu
40 twADBQf/ZcGoPhTGFuzbkcNRSIz+boaeWPoSxK2DyfScyCAuG41CY9+g0HIw9Sq8
41 DuxQvJ+vrEJjNvNE3EAEdKl/zkXMZDb1EXjGwDi845TxEMhhD1dDw2qpHqnJ2mtE
42 WpZ7juGwA3sGhi6FapO04tIGacCfNNHmlRGipyq5ZiKIRq9mLEndlECr8cwaKgkS
43 0wWu+xmMZe7N5/t/TK19HXNh4tVacv0F3fYK54GUjt2FjCQV75USnmNY4KPTYLXA
44 dzC364hEMlXpN21siIFgB04w+TXn5UF3B4FfAy5hevvr4DtV4MvMiGLu0oWjpaLC
45 MpmrR3Ny2wkmO0h+vgri9uIP06ODWIhJBBgRAgAJBQJKaQu0AhsMAAoJEClAq6mD
46 74Jq4hIAoJ5KrYS8kCwj26SAGzglwggpvt3CAJ0bekyky56vNqoegB+y4PQVDv4K
47 zA==
48 =IxPr
49 -----END PGP PUBLIC KEY BLOCK-----
50

51 chef:
52

53 # Valid values are 'accept' and 'accept-no-persist'
54 chef_license: "accept"
55

56 # Valid values are 'gems' and 'packages' and 'omnibus'
57 install_type: "packages"
58

59 # Boolean: run 'install_type' code even if chef-client
60 # appears already installed.
61 force_install: false
62

63 # Chef settings
64 server_url: "https://chef.yourorg.com"
65

66 # Node Name
67 # Defaults to the instance-id if not present

(continues on next page)

2.4. Reference 165

cloud-init, Release 24.1.3

(continued from previous page)

68 node_name: "your-node-name"
69

70 # Environment
71 # Defaults to '_default' if not present
72 environment: "production"
73

74 # Default validation name is chef-validator
75 validation_name: "yourorg-validator"
76 # if validation_cert's value is "system" then it is expected
77 # that the file already exists on the system.
78 validation_cert: |
79 -----BEGIN RSA PRIVATE KEY-----
80 YOUR-ORGS-VALIDATION-KEY-HERE
81 -----END RSA PRIVATE KEY-----
82

83 # A run list for a first boot json, an example (not required)
84 run_list:
85 - "recipe[apache2]"
86 - "role[db]"
87

88 # Specify a list of initial attributes used by the cookbooks
89 initial_attributes:
90 apache:
91 prefork:
92 maxclients: 100
93 keepalive: "off"
94

95 # if install_type is 'omnibus', change the url to download
96 omnibus_url: "https://www.chef.io/chef/install.sh"
97

98 # if install_type is 'omnibus', pass pinned version string
99 # to the install script

100 omnibus_version: "12.3.0"
101

102 # If encrypted data bags are used, the client needs to have a secrets file
103 # configured to decrypt them
104 encrypted_data_bag_secret: "/etc/chef/encrypted_data_bag_secret"

Install and run ansible-pull

1 #cloud-config
2 package_update: true
3 package_upgrade: true
4

5 # if you're already installing other packages, you may
6 # wish to manually install ansible to avoid multiple calls
7 # to your package manager
8 packages:
9 - git

10 ansible:
(continues on next page)

166 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

11 install_method: pip
12 pull:
13 url: "https://github.com/holmanb/vmboot.git"
14 playbook_name: ubuntu.yml

Configure instance to be managed by Ansible

1 #cloud-config
2 #
3 # A common use-case for cloud-init is to bootstrap user and ssh
4 # settings to be managed by a remote configuration management tool,
5 # such as ansible.
6 #
7 # This example assumes a default Ubuntu cloud image, which should contain
8 # the required software to be managed remotely by Ansible.
9 #

10 ssh_pwauth: false
11

12 users:
13 - name: ansible
14 gecos: Ansible User
15 groups: users,admin,wheel
16 sudo: ALL=(ALL) NOPASSWD:ALL
17 shell: /bin/bash
18 lock_passwd: true
19 ssh_authorized_keys:
20 - "ssh-rsa␣

→˓AAAAB3NzaC1yc2EAAAADAQABAAABgQDRCJCQ1UD9QslWDSw5Pwsvba0Wsf1pO4how5BtNaZn0xLZpTq2nqFEJshUkd/
→˓zCWF7DWyhmNphQ8c+U+wcmdNVcg2pI1kPxq0VZzBfZ7cDwhjgeLsIvTXvU+HVRtsXh4c5FlUXpRjf/
→˓x+a3vqFRvNsRd1DE+5ZqQHbOVbnsStk3PZppaByMg+AZZMx56OUk2pZCgvpCwj6LIixqwuxNKPxmJf45RyOsPUXwCwkq9UD4me5jksTPPkt3oeUWw1ZSSF8F/
→˓141moWsGxSnd5NxCbPUWGoRfYcHc865E70nN4WrZkM7RFI/s5mvQtuj8dRL67JUEwvdvEDO0EBz21FV/
→˓iOracXd2omlTUSK+wYrWGtiwQwEgr4r5bimxDKy9L8UlaJZ+ONhLTP8ecTHYkaU1C75sLX9ZYd5YtqjiNGsNF+wdW6WrXrQiWeyrGK7ZwbA7lagSxIa7yeqnKDjdkcJvQXCYGLM9AMBKWeJaOpwqZ+dOunMDLd5VZrDCU2lpCSJ1M=
→˓"

21

22

23 # use the following passwordless demonstration key for testing or
24 # replace with your own key pair
25 #
26 # -----BEGIN OPENSSH PRIVATE KEY-----
27 # b3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAABlwAAAAdzc2gtcn
28 # NhAAAAAwEAAQAAAYEA0QiQkNVA/ULJVg0sOT8LL22tFrH9aTuIaMOQbTWmZ9MS2aU6tp6h
29 # RCbIVJHf8wlhew1soZjaYUPHPlPsHJnTVXINqSNZD8atFWcwX2e3A8IY4Hi7CL0171Ph1U
30 # bbF4eHORZVF6UY3/8fmt76hUbzbEXdQxPuWakB2zlW57ErZNz2aaWgcjIPgGWTMeejlJNq
31 # WQoL6QsI+iyIsasLsTSj8ZiX+OUcjrD1F8AsJKvVA+JnuY5LEzz5Ld6HlFsNWUkhfBf9eN
32 # ZqFrBsUp3eTcQmz1FhqEX2HB3POuRO9JzeFq2ZDO0RSP7OZr0Lbo/HUS+uyVBML3bxAztB
33 # Ac9tRVf4jq2nF3dqJpU1EivsGK1hrYsEMBIK+K+W4psQysvS/FJWiWfjjYS0z/HnEx2JGl
34 # NQu+bC1/WWHeWLao4jRrDRfsHVulq160Ilnsqxiu2cGwO5WoEsSGu8nqpyg43ZHCb0FwmB
35 # izPQDASlniWjqcKmfnTrpzAy3eVWawwlNpaQkidTAAAFgGKSj8diko/HAAAAB3NzaC1yc2
36 # EAAAGBANEIkJDVQP1CyVYNLDk/Cy9trRax/Wk7iGjDkG01pmfTEtmlOraeoUQmyFSR3/MJ
37 # YXsNbKGY2mFDxz5T7ByZ01VyDakjWQ/GrRVnMF9ntwPCGOB4uwi9Ne9T4dVG2xeHhzkWVR

(continues on next page)

2.4. Reference 167

cloud-init, Release 24.1.3

(continued from previous page)

38 # elGN//H5re+oVG82xF3UMT7lmpAds5VuexK2Tc9mmloHIyD4BlkzHno5STalkKC+kLCPos
39 # iLGrC7E0o/GYl/jlHI6w9RfALCSr1QPiZ7mOSxM8+S3eh5RbDVlJIXwX/XjWahawbFKd3k
40 # 3EJs9RYahF9hwdzzrkTvSc3hatmQztEUj+zma9C26Px1EvrslQTC928QM7QQHPbUVX+I6t
41 # pxd3aiaVNRIr7BitYa2LBDASCvivluKbEMrL0vxSVoln442EtM/x5xMdiRpTULvmwtf1lh
42 # 3li2qOI0aw0X7B1bpatetCJZ7KsYrtnBsDuVqBLEhrvJ6qcoON2Rwm9BcJgYsz0AwEpZ4l
43 # o6nCpn5066cwMt3lVmsMJTaWkJInUwAAAAMBAAEAAAGAEuz77Hu9EEZyujLOdTnAW9afRv
44 # XDOZA6pS7yWEufjw5CSlMLwisR83yww09t1QWyvhRqEyYmvOBecsXgaSUtnYfftWz44apy
45 # /gQYvMVELGKaJAC/q7vjMpGyrxUPkyLMhckALU2KYgV+/rj/j6pBMeVlchmk3pikYrffUX
46 # JDY990WVO194Dm0buLRzJvfMKYF2BcfF4TvarjOXWAxSuR8www050oJ8HdKahW7Cm5S0po
47 # FRnNXFGMnLA62vN00vJW8V7j7vui9ukBbhjRWaJuY5rdG/UYmzAe4wvdIEnpk9xIn6JGCp
48 # FRYTRn7lTh5+/QlQ6FXRP8Ir1vXZFnhKzl0K8Vqh2sf4M79MsIUGAqGxg9xdhjIa5dmgp8
49 # N18IEDoNEVKUbKuKe/Z5yf8Z9tmexfH1YttjmXMOojBvUHIjRS5hdI9NxnPGRLY2kjAzcm
50 # gV9Rv3vtdF/+zalk3fAVLeK8hXK+di/7XTvYpfJ2EZBWiNrTeagfNNGiYydsQy3zjZAAAA
51 # wBNRak7UrqnIHMZn7pkCTgceb1MfByaFtlNzd+Obah54HYIQj5WdZTBAITReMZNt9S5NAR
52 # M8sQB8UoZPaVSC3ppILIOfLhs6KYj6RrGdiYwyIhMPJ5kRWF8xGCLUX5CjwH2EOq7XhIWt
53 # MwEFtd/gF2Du7HUNFPsZGnzJ3e7pDKDnE7w2khZ8CIpTFgD769uBYGAtk45QYTDo5JroVM
54 # ZPDq08Gb/RhIgJLmIpMwyreVpLLLe8SwoMJJ+rihmnJZxO8gAAAMEA0lhiKezeTshht4xu
55 # rWc0NxxD84a29gSGfTphDPOrlKSEYbkSXhjqCsAZHd8S8kMr3iF6poOk3IWSvFJ6mbd3ie
56 # qdRTgXH9Thwk4KgpjUhNsQuYRHBbI59Mo+BxSI1B1qzmJSGdmCBL54wwzZmFKDQPQKPxiL
57 # n0Mlc7GooiDMjT1tbuW/O1EL5EqTRqwgWPTKhBA6r4PnGF150hZRIMooZkD2zX6b1sGojk
58 # QpvKkEykTwnKCzF5TXO8+wJ3qbcEo9AAAAwQD+Z0r68c2YMNpsmyj3ZKtZNPSvJNcLmyD/
59 # lWoNJq3djJN4s2JbK8l5ARUdW3xSFEDI9yx/wpfsXoaqWnygP3PoFw2CM4i0EiJiyvrLFU
60 # r3JLfDUFRy3EJ24RsqbigmEsgQOzTl3xfzeFPfxFoOhokSvTG88PQji1AYHz5kA7p6Zfaz
61 # Ok11rJYIe7+e9B0lhku0AFwGyqlWQmS/MhIpnjHIk5tP4heHGSmzKQWJDbTskNWd6aq1G7
62 # 6HWfDpX4HgoM8AAAALaG9sbWFuYkBhcmM=
63 # -----END OPENSSH PRIVATE KEY-----
64 #

Configure instance to be an Ansible controller

1 #cloud-config
2 #
3 # Demonstrate setting up an ansible controller host on boot.
4 # This example installs a playbook repository from a remote private repository
5 # and then runs two of the plays.
6

7 package_update: true
8 package_upgrade: true
9 packages:

10 - git
11 - python3-pip
12

13 # Set up an ansible user
14 # ----------------------
15 # In this case I give the local ansible user passwordless sudo so that ansible
16 # may write to a local root-only file.
17 users:
18 - name: ansible
19 gecos: Ansible User
20 shell: /bin/bash

(continues on next page)

168 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

21 groups: users,admin,wheel,lxd
22 sudo: ALL=(ALL) NOPASSWD:ALL
23

24 # Initialize lxd using cloud-init.
25 # --------------------------------
26 # In this example, a lxd container is
27 # started using ansible on boot, so having lxd initialized is required.
28 lxd:
29 init:
30 storage_backend: dir
31

32 # Configure and run ansible on boot
33 # ---------------------------------
34 # Install ansible using pip, ensure that community.general collection is
35 # installed [1].
36 # Use a deploy key to clone a remote private repository then run two playbooks.
37 # The first playbook starts a lxd container and creates a new inventory file.
38 # The second playbook connects to and configures the container using ansible.
39 # The public version of the playbooks can be inspected here [2]
40 #
41 # [1] community.general is likely already installed by pip
42 # [2] https://github.com/holmanb/ansible-lxd-public
43 #
44 ansible:
45 install_method: pip
46 package_name: ansible
47 run_user: ansible
48 galaxy:
49 actions:
50 - ["ansible-galaxy", "collection", "install", "community.general"]
51

52 setup_controller:
53 repositories:
54 - path: /home/ansible/my-repo/
55 source: git@github.com:holmanb/ansible-lxd-private.git
56 run_ansible:
57 - playbook_dir: /home/ansible/my-repo
58 playbook_name: start-lxd.yml
59 timeout: 120
60 forks: 1
61 private_key: /home/ansible/.ssh/id_rsa
62 - playbook_dir: /home/ansible/my-repo
63 playbook_name: configure-lxd.yml
64 become_user: ansible
65 timeout: 120
66 forks: 1
67 private_key: /home/ansible/.ssh/id_rsa
68 inventory: new_ansible_hosts
69

70 # Write a deploy key to the filesystem for ansible.
71 # ---
72 # This deploy key is tied to a private github repository [1]

(continues on next page)

2.4. Reference 169

cloud-init, Release 24.1.3

(continued from previous page)

73 # This key exists to demonstrate deploy key usage in ansible
74 # a duplicate public copy of the repository exists here[2]
75 #
76 # [1] https://github.com/holmanb/ansible-lxd-private
77 # [2] https://github.com/holmanb/ansible-lxd-public
78 #
79 write_files:
80 - path: /home/ansible/.ssh/known_hosts
81 owner: ansible:ansible
82 permissions: 0o600
83 defer: true
84 content: |
85 |1|YJEFAk6JjnXpUjUSLFiBQS55W9E=|OLNePOn3eBa1PWhBBmt5kXsbGM4= ssh-ed25519␣

→˓AAAAC3NzaC1lZDI1NTE5AAAAIOMqqnkVzrm0SdG6UOoqKLsabgH5C9okWi0dh2l9GKJl
86 |1|PGGnpCpqi0aakERS4BWnYxMkMwM=|Td0piZoS4ZVC0OzeuRwKcH1MusM= ssh-rsa␣

→˓AAAAB3NzaC1yc2EAAAABIwAAAQEAq2A7hRGmdnm9tUDbO9IDSwBK6TbQa+PXYPCPy6rbTrTtw7PHkccKrpp0yVhp5HdEIcKr6pLlVDBfOLX9QUsyCOV0wzfjIJNlGEYsdlLJizHhbn2mUjvSAHQqZETYP81eFzLQNnPHt4EVVUh7VfDESU84KezmD5QlWpXLmvU31/
→˓yMf+Se8xhHTvKSCZIFImWwoG6mbUoWf9nzpIoaSjB+weqqUUmpaaasXVal72J+UX2B+2RPW3RcT0eOzQgqlJL3RKrTJvdsjE3JEAvGq3lGHSZXy28G3skua2SmVi/
→˓w4yCE6gbODqnTWlg7+wC604ydGXA8VJiS5ap43JXiUFFAaQ==

87 |1|OJ89KrsNcFTOvoCP/fPGKpyUYFo=|cu7mNzF+QB/5kR0spiYmUJL7DAI= ecdsa-sha2-nistp256␣
→˓AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBEmKSENjQEezOmxkZMy7opKgwFB9nkt5YRrYMjNuG5N87uRgg6CLrbo5wAdT/
→˓y6v0mKV0U2w0WZ2YB/++Tpockg=

88

89 - path: /home/ansible/.ssh/id_rsa
90 owner: ansible:ansible
91 permissions: 0o600
92 defer: true
93 encoding: base64
94 content: |
95 LS0tLS1CRUdJTiBPUEVOU1NIIFBSSVZBVEUgS0VZLS0tLS0KYjNCbGJuTnphQzFyWlhrdGRqRUFB
96 QUFBQkc1dmJtVUFBQUFFYm05dVpRQUFBQUFBQUFBQkFBQUJsd0FBQUFkemMyZ3RjbgpOaEFBQUFB
97 d0VBQVFBQUFZRUEwUWlRa05WQS9VTEpWZzBzT1Q4TEwyMnRGckg5YVR1SWFNT1FiVFdtWjlNUzJh
98 VTZ0cDZoClJDYklWSkhmOHdsaGV3MXNvWmphWVVQSFBsUHNISm5UVlhJTnFTTlpEOGF0Rldjd1gy
99 ZTNBOElZNEhpN0NMMDE3MVBoMVUKYmJGNGVIT1JaVkY2VVkzLzhmbXQ3NmhVYnpiRVhkUXhQdVdh

100 a0IyemxXNTdFclpOejJhYVdnY2pJUGdHV1RNZWVqbEpOcQpXUW9MNlFzSStpeUlzYXNMc1RTajha
101 aVgrT1VjanJEMUY4QXNKS3ZWQStKbnVZNUxFeno1TGQ2SGxGc05XVWtoZkJmOWVOClpxRnJCc1Vw
102 M2VUY1FtejFGaHFFWDJIQjNQT3VSTzlKemVGcTJaRE8wUlNQN09acjBMYm8vSFVTK3V5VkJNTDNi
103 eEF6dEIKQWM5dFJWZjRqcTJuRjNkcUpwVTFFaXZzR0sxaHJZc0VNQklLK0srVzRwc1F5c3ZTL0ZK
104 V2lXZmpqWVMwei9IbkV4MkpHbApOUXUrYkMxL1dXSGVXTGFvNGpSckRSZnNIVnVscTE2MElsbnNx
105 eGl1MmNHd081V29Fc1NHdThucXB5ZzQzWkhDYjBGd21CCml6UFFEQVNsbmlXanFjS21mblRycHpB
106 eTNlVldhd3dsTnBhUWtpZFRBQUFGZ0dLU2o4ZGlrby9IQUFBQUIzTnphQzF5YzIKRUFBQUdCQU5F
107 SWtKRFZRUDFDeVZZTkxEay9DeTl0clJheC9XazdpR2pEa0cwMXBtZlRFdG1sT3JhZW9VUW15RlNS
108 My9NSgpZWHNOYktHWTJtRkR4ejVUN0J5WjAxVnlEYWtqV1EvR3JSVm5NRjludHdQQ0dPQjR1d2k5
109 TmU5VDRkVkcyeGVIaHprV1ZSCmVsR04vL0g1cmUrb1ZHODJ4RjNVTVQ3bG1wQWRzNVZ1ZXhLMlRj
110 OW1tbG9ISXlENEJsa3pIbm81U1RhbGtLQytrTENQb3MKaUxHckM3RTBvL0dZbC9qbEhJNnc5UmZB
111 TENTcjFRUGlaN21PU3hNOCtTM2VoNVJiRFZsSklYd1gvWGpXYWhhd2JGS2QzawozRUpzOVJZYWhG
112 OWh3ZHp6cmtUdlNjM2hhdG1RenRFVWorem1hOUMyNlB4MUV2cnNsUVRDOTI4UU03UVFIUGJVVlgr
113 STZ0CnB4ZDNhaWFWTlJJcjdCaXRZYTJMQkRBU0N2aXZsdUtiRU1yTDB2eFNWb2xuNDQyRXRNL3g1
114 eE1kaVJwVFVMdm13dGYxbGgKM2xpMnFPSTBhdzBYN0IxYnBhdGV0Q0paN0tzWXJ0bkJzRHVWcUJM
115 RWhydko2cWNvT04yUndtOUJjSmdZc3owQXdFcFo0bApvNm5DcG41MDY2Y3dNdDNsVm1zTUpUYVdr
116 SkluVXdBQUFBTUJBQUVBQUFHQUV1ejc3SHU5RUVaeXVqTE9kVG5BVzlhZlJ2ClhET1pBNnBTN3lX
117 RXVmanc1Q1NsTUx3aXNSODN5d3cwOXQxUVd5dmhScUV5WW12T0JlY3NYZ2FTVXRuWWZmdFd6NDRh
118 cHkKL2dRWXZNVkVMR0thSkFDL3E3dmpNcEd5cnhVUGt5TE1oY2tBTFUyS1lnVisvcmovajZwQk1l

(continues on next page)

170 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

119 VmxjaG1rM3Bpa1lyZmZVWApKRFk5OTBXVk8xOTREbTBidUxSekp2Zk1LWUYyQmNmRjRUdmFyak9Y
120 V0F4U3VSOHd3dzA1MG9KOEhkS2FoVzdDbTVTMHBvCkZSbk5YRkdNbkxBNjJ2TjAwdkpXOFY3ajd2
121 dWk5dWtCYmhqUldhSnVZNXJkRy9VWW16QWU0d3ZkSUVucGs5eEluNkpHQ3AKRlJZVFJuN2xUaDUr
122 L1FsUTZGWFJQOElyMXZYWkZuaEt6bDBLOFZxaDJzZjRNNzlNc0lVR0FxR3hnOXhkaGpJYTVkbWdw
123 OApOMThJRURvTkVWS1ViS3VLZS9aNXlmOFo5dG1leGZIMVl0dGptWE1Pb2pCdlVISWpSUzVoZEk5
124 TnhuUEdSTFkya2pBemNtCmdWOVJ2M3Z0ZEYvK3phbGszZkFWTGVLOGhYSytkaS83WFR2WXBmSjJF
125 WkJXaU5yVGVhZ2ZOTkdpWXlkc1F5M3pqWkFBQUEKd0JOUmFrN1VycW5JSE1abjdwa0NUZ2NlYjFN
126 ZkJ5YUZ0bE56ZCtPYmFoNTRIWUlRajVXZFpUQkFJVFJlTVpOdDlTNU5BUgpNOHNRQjhVb1pQYVZT
127 QzNwcElMSU9mTGhzNktZajZSckdkaVl3eUloTVBKNWtSV0Y4eEdDTFVYNUNqd0gyRU9xN1hoSVd0
128 Ck13RUZ0ZC9nRjJEdTdIVU5GUHNaR256SjNlN3BES0RuRTd3MmtoWjhDSXBURmdENzY5dUJZR0F0
129 azQ1UVlURG81SnJvVk0KWlBEcTA4R2IvUmhJZ0pMbUlwTXd5cmVWcExMTGU4U3dvTUpKK3JpaG1u
130 Slp4TzhnQUFBTUVBMGxoaUtlemVUc2hodDR4dQpyV2MwTnh4RDg0YTI5Z1NHZlRwaERQT3JsS1NF
131 WWJrU1hoanFDc0FaSGQ4UzhrTXIzaUY2cG9PazNJV1N2Rko2bWJkM2llCnFkUlRnWEg5VGh3azRL
132 Z3BqVWhOc1F1WVJIQmJJNTlNbytCeFNJMUIxcXptSlNHZG1DQkw1NHd3elptRktEUVBRS1B4aUwK
133 bjBNbGM3R29vaURNalQxdGJ1Vy9PMUVMNUVxVFJxd2dXUFRLaEJBNnI0UG5HRjE1MGhaUklNb29a
134 a0Qyelg2YjFzR29qawpRcHZLa0V5a1R3bktDekY1VFhPOCt3SjNxYmNFbzlBQUFBd1FEK1owcjY4
135 YzJZTU5wc215ajNaS3RaTlBTdkpOY0xteUQvCmxXb05KcTNkakpONHMySmJLOGw1QVJVZFczeFNG
136 RURJOXl4L3dwZnNYb2FxV255Z1AzUG9GdzJDTTRpMEVpSml5dnJMRlUKcjNKTGZEVUZSeTNFSjI0
137 UnNxYmlnbUVzZ1FPelRsM3hmemVGUGZ4Rm9PaG9rU3ZURzg4UFFqaTFBWUh6NWtBN3A2WmZhegpP
138 azExckpZSWU3K2U5QjBsaGt1MEFGd0d5cWxXUW1TL01oSXBuakhJazV0UDRoZUhHU216S1FXSkRi
139 VHNrTldkNmFxMUc3CjZIV2ZEcFg0SGdvTThBQUFBTGFHOXNiV0Z1WWtCaGNtTT0KLS0tLS1FTkQg
140 T1BFTlNTSCBQUklWQVRFIEtFWS0tLS0tCg==

Add primary apt repositories

1 #cloud-config
2

3 # Add primary apt repositories
4 #
5 # To add 3rd party repositories, see cloud-config-apt.txt or the
6 # Additional apt configuration and repositories section.
7 #
8 #
9 # Default: auto select based on cloud metadata

10 # in ec2, the default is <region>.archive.ubuntu.com
11 # apt:
12 # primary:
13 # - arches: [default]
14 # uri:
15 # use the provided mirror
16 # search:
17 # search the list for the first mirror.
18 # this is currently very limited, only verifying that
19 # the mirror is dns resolvable or an IP address
20 #
21 # if neither mirror is set (the default)
22 # then use the mirror provided by the DataSource found.
23 # In EC2, that means using <region>.ec2.archive.ubuntu.com
24 #
25 # if no mirror is provided by the DataSource, but 'search_dns' is

(continues on next page)

2.4. Reference 171

cloud-init, Release 24.1.3

(continued from previous page)

26 # true, then search for dns names '<distro>-mirror' in each of
27 # - fqdn of this host per cloud metadata
28 # - localdomain
29 # - no domain (which would search domains listed in /etc/resolv.conf)
30 # If there is a dns entry for <distro>-mirror, then it is assumed that there
31 # is a distro mirror at http://<distro>-mirror.<domain>/<distro>
32 #
33 # That gives the cloud provider the opportunity to set mirrors of a distro
34 # up and expose them only by creating dns entries.
35 #
36 # if none of that is found, then the default distro mirror is used
37 apt:
38 primary:
39 - arches: [default]
40 uri: http://us.archive.ubuntu.com/ubuntu/
41 # or
42 apt:
43 primary:
44 - arches: [default]
45 search:
46 - http://local-mirror.mydomain
47 - http://archive.ubuntu.com
48 # or
49 apt:
50 primary:
51 - arches: [default]
52 search_dns: True

Run commands on first boot

1 #cloud-config
2

3 # boot commands
4 # default: none
5 # This is very similar to runcmd, but commands run very early
6 # in the boot process, only slightly after a 'boothook' would run.
7 # - bootcmd will run on every boot
8 # - INSTANCE_ID variable will be set to the current instance ID
9 # - 'cloud-init-per' command can be used to make bootcmd run exactly once

10 bootcmd:
11 - echo 192.168.1.130 us.archive.ubuntu.com >> /etc/hosts
12 - [cloud-init-per, once, mymkfs, mkfs, /dev/vdb]

1 #cloud-config
2

3 # run commands
4 # default: none
5 # runcmd contains a list of either lists or a string
6 # each item will be executed in order at rc.local like level with
7 # output to the console

(continues on next page)

172 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

8 # - runcmd only runs during the first boot
9 # - if the item is a list, the items will be properly executed as if

10 # passed to execve(3) (with the first arg as the command).
11 # - if the item is a string, it will be simply written to the file and
12 # will be interpreted by 'sh'
13 #
14 # Note, that the list has to be proper yaml, so you have to quote
15 # any characters yaml would eat (':' can be problematic)
16 runcmd:
17 - [ls, -l, /]
18 - [sh, -xc, "echo $(date) ': hello world!'"]
19 - [sh, -c, echo "=========hello world========="]
20 - ls -l /root
21 # Note: Don't write files to /tmp from cloud-init use /run/somedir instead.
22 # Early boot environments can race systemd-tmpfiles-clean LP: #1707222.
23 - mkdir /run/mydir
24 - [wget, "http://slashdot.org", -O, /run/mydir/index.html]

Install arbitrary packages

1 #cloud-config
2

3 # Install additional packages on first boot
4 #
5 # Default: none
6 #
7 # if packages are specified, then package_update will be set to true
8 #
9 # packages may be supplied as a single package name or as a list

10 # with the format [<package>, <version>] wherein the specific
11 # package version will be installed.
12 packages:
13 - pwgen
14 - pastebinit
15 - [libpython2.7, 2.7.3-0ubuntu3.1]

Update apt database on first boot

1 #cloud-config
2 # Update apt database on first boot (run 'apt-get update').
3 # Note, if packages are given, or package_upgrade is true, then
4 # update will be done independent of this setting.
5 #
6 # Default: false
7 package_update: true

2.4. Reference 173

cloud-init, Release 24.1.3

Run apt or yum upgrade

1 #cloud-config
2

3 # Upgrade the instance on first boot
4 #
5 # Default: false
6 package_upgrade: true

Adjust mount points mounted

1 #cloud-config
2

3 # set up mount points
4 # 'mounts' contains a list of lists
5 # the inner list are entries for an /etc/fstab line
6 # ie : [fs_spec, fs_file, fs_vfstype, fs_mntops, fs-freq, fs_passno]
7 #
8 # default:
9 # mounts:

10 # - [ephemeral0, /mnt]
11 # - [swap, none, swap, sw, 0, 0]
12 #
13 # in order to remove a previously listed mount (ie, one from defaults)
14 # list only the fs_spec. For example, to override the default, of
15 # mounting swap:
16 # - [swap]
17 # or
18 # - [swap, null]
19 #
20 # - if a device does not exist at the time, an entry will still be
21 # written to /etc/fstab.
22 # - '/dev' can be omitted for device names that begin with: xvd, sd, hd, vd
23 # - if an entry does not have all 6 fields, they will be filled in
24 # with values from 'mount_default_fields' below.
25 #
26 # Note, that you should set 'nofail' (see man fstab) for volumes that may not
27 # be attached at instance boot (or reboot).
28 #
29 mounts:
30 - [ephemeral0, /mnt, auto, "defaults,noexec"]
31 - [sdc, /opt/data]
32 - [xvdh, /opt/data, "auto", "defaults,nofail", "0", "0"]
33 - [dd, /dev/zero]
34

35 # mount_default_fields
36 # These values are used to fill in any entries in 'mounts' that are not
37 # complete. This must be an array, and must have 6 fields.
38 mount_default_fields: [None, None, "auto", "defaults,nofail", "0", "2"]
39

40

(continues on next page)

174 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

41 # swap can also be set up by the 'mounts' module
42 # default is to not create any swap files, because 'size' is set to 0
43 swap:
44 filename: /swap.img
45 size: "auto" # or size in bytes
46 maxsize: 10485760 # size in bytes

Configure instance's SSH keys

1 #cloud-config
2

3 # add each entry to ~/.ssh/authorized_keys for the configured user or the
4 # first user defined in the user definition directive.
5 ssh_authorized_keys:
6 - ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAGEA3FSyQwBI6Z+nCSjUUk8EEAnnkhXlukKoUPND/

→˓RRClWz2s5TCzIkd3Ou5+Cyz71X0XmazM3l5WgeErvtIwQMyT1KjNoMhoJMrJnWqQPOt5Q8zWd9qG7PBl9+eiH5qV7NZ␣
→˓mykey@host

7 - ssh-rsa␣
→˓AAAAB3NzaC1yc2EAAAABIwAAAQEA3I7VUf2l5gSn5uavROsc5HRDpZdQueUq5ozemNSj8T7enqKHOEaFoU2VoPgGEWC9RyzSQVeyD6s7APMcE82EtmW4skVEgEGSbDc1pvxzxtchBj78hJP6Cf5TCMFSXw+Fz5rF1dR23QDbN1mkHs7adr8GW4kSWqU7Q7NDwfIrJJtO7Hi42GyXtvEONHbiRPOe8stqUly7MvUoN+5kfjBM8Qqpfl2+FNhTYWpMfYdPUnE7u536WqzFmsaqJctz3gBxH9Ex7dFtrxR4qiqEr9Qtlu3xGn7Bw07/
→˓+i1D+ey3ONkZLN+LQ714cgj8fRS4Hj29SCmXp5Kt5/82cD/VN3NtHw== smoser@brickies

8

9 # Send pre-generated SSH private keys to the server
10 # If these are present, they will be written to /etc/ssh and
11 # new random keys will not be generated
12 # in addition to 'rsa' as shown below, 'ecdsa' is also supported
13 ssh_keys:
14 rsa_private: |
15 -----BEGIN RSA PRIVATE KEY-----
16 MIIBxwIBAAJhAKD0YSHy73nUgysO13XsJmd4fHiFyQ+00R7VVu2iV9Qcon2LZS/x
17 1cydPZ4pQpfjEha6WxZ6o8ci/Ea/w0n+0HGPwaxlEG2Z9inNtj3pgFrYcRztfECb
18 1j6HCibZbAzYtwIBIwJgO8h72WjcmvcpZ8OvHSvTwAguO2TkR6mPgHsgSaKy6GJo
19 PUJnaZRWuba/HX0KGyhz19nPzLpzG5f0fYahlMJAyc13FV7K6kMBPXTRR6FxgHEg
20 L0MPC7cdqAwOVNcPY6A7AjEA1bNaIjOzFN2sfZX0j7OMhQuc4zP7r80zaGc5oy6W
21 p58hRAncFKEvnEq2CeL3vtuZAjEAwNBHpbNsBYTRPCHM7rZuG/iBtwp8Rxhc9I5w
22 ixvzMgi+HpGLWzUIBS+P/XhekIjPAjA285rVmEP+DR255Ls65QbgYhJmTzIXQ2T9
23 luLvcmFBC6l35Uc4gTgg4ALsmXLn71MCMGMpSWspEvuGInayTCL+vEjmNBT+FAdO
24 W7D4zCpI43jRS9U06JVOeSc9CDk2lwiA3wIwCTB/6uc8Cq85D9YqpM10FuHjKpnP
25 REPPOyrAspdeOAV+6VKRavstea7+2DZmSUgE
26 -----END RSA PRIVATE KEY-----
27

28 rsa_public: ssh-rsa␣
→˓AAAAB3NzaC1yc2EAAAABIwAAAGEAoPRhIfLvedSDKw7XdewmZ3h8eIXJD7TRHtVW7aJX1ByifYtlL/
→˓HVzJ09nilCl+MSFrpbFnqjxyL8Rr/DSf7QcY/BrGUQbZn2Kc22PemAWthxHO18QJvWPocKJtlsDNi3␣
→˓smoser@localhost

29

30 # By default, the fingerprints of the authorized keys for the users
31 # cloud-init adds are printed to the console. Setting
32 # no_ssh_fingerprints to true suppresses this output.
33 no_ssh_fingerprints: false
34

(continues on next page)

2.4. Reference 175

cloud-init, Release 24.1.3

(continued from previous page)

35 # By default, (most) ssh host keys are printed to the console. Setting
36 # emit_keys_to_console to false suppresses this output.
37 ssh:
38 emit_keys_to_console: false

Additional apt configuration and repositories

1 #cloud-config
2 # apt_pipelining (configure Acquire::http::Pipeline-Depth)
3 # Default: disables HTTP pipelining. Certain web servers, such
4 # as S3 do not pipeline properly (LP: #948461).
5 # Valid options:
6 # False/default: Disables pipelining for APT
7 # None/Unchanged: Use OS default
8 # Number: Set pipelining to some number (not recommended)
9 apt_pipelining: False

10

11 # Install additional packages on first boot
12 #
13 # Default: none
14 #
15 # if packages are specified, then package_update will be set to true
16

17 packages: ['pastebinit']
18

19 apt:
20 # The apt config consists of two major "areas".
21 #
22 # On one hand there is the global configuration for the apt feature.
23 #
24 # On one hand (down in this file) there is the source dictionary which allows
25 # to define various entries to be considered by apt.
26

27 ##
28 # Section 1: global apt configuration
29 #
30 # The following examples number the top keys to ease identification in
31 # discussions.
32

33 # 1.1 preserve_sources_list
34 #
35 # Preserves the existing /etc/apt/sources.list
36 # Default: false - do overwrite sources_list. If set to true then any
37 # "mirrors" configuration will have no effect.
38 # Set to true to avoid affecting sources.list. In that case only
39 # "extra" source specifications will be written into
40 # /etc/apt/sources.list.d/*
41 preserve_sources_list: true
42

43 # 1.2 disable_suites
(continues on next page)

176 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

44 #
45 # This is an empty list by default, so nothing is disabled.
46 #
47 # If given, those suites are removed from sources.list after all other
48 # modifications have been made.
49 # Suites are even disabled if no other modification was made,
50 # but not if is preserve_sources_list is active.
51 # There is a special alias "$RELEASE" as in the sources that will be replace
52 # by the matching release.
53 #
54 # To ease configuration and improve readability the following common ubuntu
55 # suites will be automatically mapped to their full definition.
56 # updates => $RELEASE-updates
57 # backports => $RELEASE-backports
58 # security => $RELEASE-security
59 # proposed => $RELEASE-proposed
60 # release => $RELEASE
61 #
62 # There is no harm in specifying a suite to be disabled that is not found in
63 # the source.list file (just a no-op then)
64 #
65 # Note: Lines don't get deleted, but disabled by being converted to a comment.
66 # The following example disables all usual defaults except $RELEASE-security.
67 # On top it disables a custom suite called "mysuite"
68 disable_suites: [$RELEASE-updates, backports, $RELEASE, mysuite]
69

70 # 1.3 primary/security archives
71 #
72 # Default: none - instead it is auto select based on cloud metadata
73 # so if neither "uri" nor "search", nor "search_dns" is set (the default)
74 # then use the mirror provided by the DataSource found.
75 # In EC2, that means using <region>.ec2.archive.ubuntu.com
76 #
77 # define a custom (e.g. localized) mirror that will be used in sources.list
78 # and any custom sources entries for deb / deb-src lines.
79 #
80 # One can set primary and security mirror to different uri's
81 # the child elements to the keys primary and secondary are equivalent
82 primary:
83 # arches is list of architectures the following config applies to
84 # the special keyword "default" applies to any architecture not explicitly
85 # listed.
86 - arches: [amd64, i386, default]
87 # uri is just defining the target as-is
88 uri: http://us.archive.ubuntu.com/ubuntu
89 #
90 # via search one can define lists that are tried one by one.
91 # The first with a working DNS resolution (or if it is an IP) will be
92 # picked. That way one can keep one configuration for multiple
93 # subenvironments that select the working one.
94 search:
95 - http://cool.but-sometimes-unreachable.com/ubuntu

(continues on next page)

2.4. Reference 177

cloud-init, Release 24.1.3

(continued from previous page)

96 - http://us.archive.ubuntu.com/ubuntu
97 # if no mirror is provided by uri or search but 'search_dns' is
98 # true, then search for dns names '<distro>-mirror' in each of
99 # - fqdn of this host per cloud metadata

100 # - localdomain
101 # - no domain (which would search domains listed in /etc/resolv.conf)
102 # If there is a dns entry for <distro>-mirror, then it is assumed that
103 # there is a distro mirror at http://<distro>-mirror.<domain>/<distro>
104 #
105 # That gives the cloud provider the opportunity to set mirrors of a distro
106 # up and expose them only by creating dns entries.
107 #
108 # if none of that is found, then the default distro mirror is used
109 search_dns: true
110 #
111 # If multiple of a category are given
112 # 1. uri
113 # 2. search
114 # 3. search_dns
115 # the first defining a valid mirror wins (in the order as defined here,
116 # not the order as listed in the config).
117 #
118 # Additionally, if the repository requires a custom signing key, it can be
119 # specified via the same fields as for custom sources:
120 # 'keyid': providing a key to import via shortid or fingerprint
121 # 'key': providing a raw PGP key
122 # 'keyserver': specify an alternate keyserver to pull keys from that
123 # were specified by keyid
124 - arches: [s390x, arm64]
125 # as above, allowing to have one config for different per arch mirrors
126 # security is optional, if not defined it is set to the same value as primary
127 security:
128 - uri: http://security.ubuntu.com/ubuntu
129 arches: [default]
130 # If search_dns is set for security the searched pattern is:
131 # <distro>-security-mirror
132

133 # if no mirrors are specified at all, or all lookups fail it will try
134 # to get them from the cloud datasource and if those neither provide one fall
135 # back to:
136 # primary: http://archive.ubuntu.com/ubuntu
137 # security: http://security.ubuntu.com/ubuntu
138

139 # 1.4 sources_list
140 #
141 # Provide a custom template for rendering sources.list
142 # without one provided cloud-init uses builtin templates for
143 # ubuntu and debian.
144 # Within these sources.list templates you can use the following replacement
145 # variables (all have sane Ubuntu defaults, but mirrors can be overwritten
146 # as needed (see above)):
147 # => $RELEASE, $MIRROR, $PRIMARY, $SECURITY

(continues on next page)

178 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

148 sources_list: | # written by cloud-init custom template
149 deb $MIRROR $RELEASE main restricted
150 deb-src $MIRROR $RELEASE main restricted
151 deb $PRIMARY $RELEASE universe restricted
152 deb $SECURITY $RELEASE-security multiverse
153

154 # 1.5 conf
155 #
156 # Any apt config string that will be made available to apt
157 # see the APT.CONF(5) man page for details what can be specified
158 conf: | # APT config
159 APT {
160 Get {
161 Assume-Yes "true";
162 Fix-Broken "true";
163 };
164 };
165

166 # 1.6 (http_|ftp_|https_)proxy
167 #
168 # Proxies are the most common apt.conf option, so that for simplified use
169 # there is a shortcut for those. Those get automatically translated into the
170 # correct Acquire::*::Proxy statements.
171 #
172 # note: proxy actually being a short synonym to http_proxy
173 proxy: http://[[user][:pass]@]host[:port]/
174 http_proxy: http://[[user][:pass]@]host[:port]/
175 ftp_proxy: ftp://[[user][:pass]@]host[:port]/
176 https_proxy: https://[[user][:pass]@]host[:port]/
177

178 # 1.7 add_apt_repo_match
179 #
180 # 'source' entries in apt-sources that match this python regex
181 # expression will be passed to add-apt-repository
182 # The following example is also the builtin default if nothing is specified
183 add_apt_repo_match: '^[\w-]+:\w'
184

185

186 ##
187 # Section 2: source list entries
188 #
189 # This is a dictionary (unlike most block/net which are lists)
190 #
191 # The key of each source entry is the filename and will be prepended by
192 # /etc/apt/sources.list.d/ if it doesn't start with a '/'.
193 # If it doesn't end with .list it will be appended so that apt picks up its
194 # configuration.
195 #
196 # Whenever there is no content to be written into such a file, the key is
197 # not used as filename - yet it can still be used as index for merging
198 # configuration.
199 #

(continues on next page)

2.4. Reference 179

cloud-init, Release 24.1.3

(continued from previous page)

200 # The values inside the entries consist of the following optional entries:
201 # 'source': a sources.list entry (some variable replacements apply)
202 # 'keyid': providing a key to import via shortid or fingerprint
203 # 'key': providing a raw PGP key
204 # 'keyserver': specify an alternate keyserver to pull keys from that
205 # were specified by keyid
206

207 # This allows merging between multiple input files than a list like:
208 # cloud-config1
209 # sources:
210 # s1: {'key': 'key1', 'source': 'source1'}
211 # cloud-config2
212 # sources:
213 # s2: {'key': 'key2'}
214 # s1: {'keyserver': 'foo'}
215 # This would be merged to
216 # sources:
217 # s1:
218 # keyserver: foo
219 # key: key1
220 # source: source1
221 # s2:
222 # key: key2
223 #
224 # The following examples number the subfeatures per sources entry to ease
225 # identification in discussions.
226

227

228 sources:
229 curtin-dev-ppa.list:
230 # 2.1 source
231 #
232 # Creates a file in /etc/apt/sources.list.d/ for the sources list entry
233 # based on the key: "/etc/apt/sources.list.d/curtin-dev-ppa.list"
234 source: "deb http://ppa.launchpad.net/curtin-dev/test-archive/ubuntu bionic main"
235

236 # 2.2 keyid
237 #
238 # Importing a gpg key for a given key id. Used keyserver defaults to
239 # keyserver.ubuntu.com
240 keyid: F430BBA5 # GPG key ID published on a key server
241

242 ignored1:
243 # 2.3 PPA shortcut
244 #
245 # Setup correct apt sources.list line and Auto-Import the signing key
246 # from LP
247 #
248 # See https://help.launchpad.net/Packaging/PPA for more information
249 # this requires 'add-apt-repository'. This will create a file in
250 # /etc/apt/sources.list.d automatically, therefore the key here is
251 # ignored as filename in those cases.

(continues on next page)

180 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

252 source: "ppa:curtin-dev/test-archive" # Quote the string
253

254 my-repo2.list:
255 # 2.4 replacement variables
256 #
257 # sources can use $MIRROR, $PRIMARY, $SECURITY, $RELEASE and $KEY_FILE
258 # replacement variables.
259 # They will be replaced with the default or specified mirrors and the
260 # running release.
261 # The entry below would be possibly turned into:
262 # source: deb http://archive.ubuntu.com/ubuntu bionic multiverse
263 source: deb [signed-by=$KEY_FILE] $MIRROR $RELEASE multiverse
264 keyid: F430BBA5
265

266 my-repo3.list:
267 # this would have the same end effect as 'ppa:curtin-dev/test-archive'
268 source: "deb http://ppa.launchpad.net/curtin-dev/test-archive/ubuntu bionic main"
269 keyid: F430BBA5 # GPG key ID published on the key server
270 filename: curtin-dev-ppa.list
271

272 ignored2:
273 # 2.5 key only
274 #
275 # this would only import the key without adding a ppa or other source spec
276 # since this doesn't generate a source.list file the filename key is ignored
277 keyid: F430BBA5 # GPG key ID published on a key server
278

279 ignored3:
280 # 2.6 key id alternatives
281 #
282 # Keyid's can also be specified via their long fingerprints
283 keyid: B59D 5F15 97A5 04B7 E230 6DCA 0620 BBCF 0368 3F77
284

285 ignored4:
286 # 2.7 alternative keyservers
287 #
288 # One can also specify alternative keyservers to fetch keys from.
289 keyid: B59D 5F15 97A5 04B7 E230 6DCA 0620 BBCF 0368 3F77
290 keyserver: pgp.mit.edu
291

292 ignored5:
293 # 2.8 signed-by
294 #
295 # One can specify [signed-by=$KEY_FILE] in the source definition, which
296 # will make the key be installed in the directory /etc/cloud-init.gpg.d/
297 # and the $KEY_FILE replacement variable will be replaced with the path
298 # to the specified key. If $KEY_FILE is used, but no key is specified,
299 # apt update will (rightfully) fail due to an invalid value.
300 source: deb [signed-by=$KEY_FILE] $MIRROR $RELEASE multiverse
301 keyid: B59D 5F15 97A5 04B7 E230 6DCA 0620 BBCF 0368 3F77
302

303 my-repo4.list:
(continues on next page)

2.4. Reference 181

cloud-init, Release 24.1.3

(continued from previous page)

304 # 2.9 raw key
305 #
306 # The apt signing key can also be specified by providing a pgp public key
307 # block. Providing the PGP key this way is the most robust method for
308 # specifying a key, as it removes dependency on a remote key server.
309 #
310 # As with keyid's this can be specified with or without some actual source
311 # content.
312 key: | # The value needs to start with -----BEGIN PGP PUBLIC KEY BLOCK-----
313 -----BEGIN PGP PUBLIC KEY BLOCK-----
314 Version: SKS 1.0.10
315

316 mI0ESpA3UQEEALdZKVIMq0j6qWAXAyxSlF63SvPVIgxHPb9Nk0DZUixn+akqytxG4zKCONz6
317 qLjoBBfHnynyVLfT4ihg9an1PqxRnTO+JKQxl8NgKGz6Pon569GtAOdWNKw15XKinJTDLjnj
318 9y96ljJqRcpV9t/WsIcdJPcKFR5voHTEoABE2aEXABEBAAG0GUxhdW5jaHBhZCBQUEEgZm9y
319 IEFsZXN0aWOItgQTAQIAIAUCSpA3UQIbAwYLCQgHAwIEFQIIAwQWAgMBAh4BAheAAAoJEA7H
320 5Qi+CcVxWZ8D/1MyYvfj3FJPZUm2Yo1zZsQ657vHI9+pPouqflWOayRR9jbiyUFIn0VdQBrP
321 t0FwvnOFArUovUWoKAEdqR8hPy3M3APUZjl5K4cMZR/xaMQeQRZ5CHpS4DBKURKAHC0ltS5o
322 uBJKQOZm5iltJp15cgyIkBkGe8Mx18VFyVglAZey
323 =Y2oI
324 -----END PGP PUBLIC KEY BLOCK-----

Disk setup

1 #cloud-config
2 # Cloud-init supports the creation of simple partition tables and filesystems
3 # on devices.
4

5 # Default disk definitions for AWS
6 # --------------------------------
7 # (Not implemented yet, but provided for future documentation)
8

9 disk_setup:
10 ephemeral0:
11 table_type: 'mbr'
12 layout: True
13 overwrite: False
14

15 fs_setup:
16 - label: None,
17 filesystem: ext3
18 device: ephemeral0
19 partition: auto
20

21 # Default disk definitions for Microsoft Azure
22 # --
23

24 device_aliases: {'ephemeral0': '/dev/sdb'}
25 disk_setup:
26 ephemeral0:

(continues on next page)

182 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

27 table_type: mbr
28 layout: True
29 overwrite: False
30

31 fs_setup:
32 - label: ephemeral0
33 filesystem: ext4
34 device: ephemeral0.1
35 replace_fs: ntfs
36

37

38 # Data disks definitions for Microsoft Azure
39 # --
40

41 disk_setup:
42 /dev/disk/azure/scsi1/lun0:
43 table_type: gpt
44 layout: True
45 overwrite: True
46

47 fs_setup:
48 - device: /dev/disk/azure/scsi1/lun0
49 partition: 1
50 filesystem: ext4
51

52

53 # Default disk definitions for SmartOS
54 # ------------------------------------
55

56 device_aliases: {'ephemeral0': '/dev/vdb'}
57 disk_setup:
58 ephemeral0:
59 table_type: mbr
60 layout: False
61 overwrite: False
62

63 fs_setup:
64 - label: ephemeral0
65 filesystem: ext4
66 device: ephemeral0.0
67

68 # Caveat for SmartOS: if ephemeral disk is not defined, then the disk will
69 # not be automatically added to the mounts.
70

71

72 # The default definition is used to make sure that the ephemeral storage is
73 # setup properly.
74

75 # "disk_setup": disk partitioning
76 # --------------------------------
77

78 # The disk_setup directive instructs Cloud-init to partition a disk. The format is:

(continues on next page)

2.4. Reference 183

cloud-init, Release 24.1.3

(continued from previous page)

79

80 disk_setup:
81 ephemeral0:
82 table_type: 'mbr'
83 layout: true
84 /dev/xvdh:
85 table_type: 'mbr'
86 layout:
87 - 33
88 - [33, 82]
89 - 33
90 overwrite: True
91

92 # The format is a list of dicts of dicts. The first value is the name of the
93 # device and the subsequent values define how to create and layout the
94 # partition.
95 # The general format is:
96 # disk_setup:
97 # <DEVICE>:
98 # table_type: 'mbr'
99 # layout: <LAYOUT|BOOL>

100 # overwrite: <BOOL>
101 #
102 # Where:
103 # <DEVICE>: The name of the device. 'ephemeralX' and 'swap' are special
104 # values which are specific to the cloud. For these devices
105 # Cloud-init will look up what the real devices is and then
106 # use it.
107 #
108 # For other devices, the kernel device name is used. At this
109 # time only simply kernel devices are supported, meaning
110 # that device mapper and other targets may not work.
111 #
112 # Note: At this time, there is no handling or setup of
113 # device mapper targets.
114 #
115 # table_type=<TYPE>: Currently the following are supported:
116 # 'mbr': default and setups a MS-DOS partition table
117 # 'gpt': setups a GPT partition table
118 #
119 # Note: At this time only 'mbr' and 'gpt' partition tables
120 # are allowed. It is anticipated in the future that
121 # we'll also have "RAID" to create a mdadm RAID.
122 #
123 # layout={...}: The device layout. This is a list of values, with the
124 # percentage of disk that partition will take.
125 # Valid options are:
126 # [<SIZE>, [<SIZE>, <PART_TYPE]]
127 #
128 # Where <SIZE> is the _percentage_ of the disk to use, while
129 # <PART_TYPE> is the numerical value of the partition type.
130 #

(continues on next page)

184 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

131 # The following setups two partitions, with the first
132 # partition having a swap label, taking 1/3 of the disk space
133 # and the remainder being used as the second partition.
134 # /dev/xvdh':
135 # table_type: 'mbr'
136 # layout:
137 # - [33,82]
138 # - 66
139 # overwrite: True
140 #
141 # When layout is "true" it means single partition the entire
142 # device.
143 #
144 # When layout is "false" it means don't partition or ignore
145 # existing partitioning.
146 #
147 # If layout is set to "true" and overwrite is set to "false",
148 # it will skip partitioning the device without a failure.
149 #
150 # overwrite=<BOOL>: This describes whether to ride with safetys on and
151 # everything holstered.
152 #
153 # 'false' is the default, which means that:
154 # 1. The device will be checked for a partition table
155 # 2. The device will be checked for a filesystem
156 # 3. If either a partition of filesystem is found, then
157 # the operation will be _skipped_.
158 #
159 # 'true' is cowboy mode. There are no checks and things are
160 # done blindly. USE with caution, you can do things you
161 # really, really don't want to do.
162 #
163 #
164 # fs_setup: Setup the filesystem
165 # ------------------------------
166 #
167 # fs_setup describes the how the filesystems are supposed to look.
168

169 fs_setup:
170 - label: ephemeral0
171 filesystem: 'ext3'
172 device: 'ephemeral0'
173 partition: 'auto'
174 - label: mylabl2
175 filesystem: 'ext4'
176 device: '/dev/xvda1'
177 - cmd: mkfs -t %(filesystem)s -L %(label)s %(device)s
178 label: mylabl3
179 filesystem: 'btrfs'
180 device: '/dev/xvdh'
181

182 # The general format is:

(continues on next page)

2.4. Reference 185

cloud-init, Release 24.1.3

(continued from previous page)

183 # fs_setup:
184 # - label: <LABEL>
185 # filesystem: <FS_TYPE>
186 # device: <DEVICE>
187 # partition: <PART_VALUE>
188 # overwrite: <OVERWRITE>
189 # replace_fs: <FS_TYPE>
190 #
191 # Where:
192 # <LABEL>: The filesystem label to be used. If set to None, no label is
193 # used.
194 #
195 # <FS_TYPE>: The filesystem type. It is assumed that the there
196 # will be a "mkfs.<FS_TYPE>" that behaves likes "mkfs". On a standard
197 # Ubuntu Cloud Image, this means that you have the option of ext{2,3,4},
198 # and vfat by default.
199 #
200 # <DEVICE>: The device name. Special names of 'ephemeralX' or 'swap'
201 # are allowed and the actual device is acquired from the cloud datasource.
202 # When using 'ephemeralX' (i.e. ephemeral0), make sure to leave the
203 # label as 'ephemeralX' otherwise there may be issues with the mounting
204 # of the ephemeral storage layer.
205 #
206 # If you define the device as 'ephemeralX.Y' then Y will be interpetted
207 # as a partition value. However, ephermalX.0 is the _same_ as ephemeralX.
208 #
209 # <PART_VALUE>:
210 # Partition definitions are overwritten if you use the '<DEVICE>.Y' notation.
211 #
212 # The valid options are:
213 # "auto|any": tell cloud-init not to care whether there is a partition
214 # or not. Auto will use the first partition that does not contain a
215 # filesystem already. In the absence of a partition table, it will
216 # put it directly on the disk.
217 #
218 # "auto": If a filesystem that matches the specification in terms of
219 # label, filesystem and device, then cloud-init will skip the creation
220 # of the filesystem.
221 #
222 # "any": If a filesystem that matches the filesystem type and device,
223 # then cloud-init will skip the creation of the filesystem.
224 #
225 # Devices are selected based on first-detected, starting with partitions
226 # and then the raw disk. Consider the following:
227 # NAME FSTYPE LABEL
228 # xvdb
229 # |-xvdb1 ext4
230 # |-xvdb2
231 # |-xvdb3 btrfs test
232 # \-xvdb4 ext4 test
233 #
234 # If you ask for 'auto', label of 'test, and filesystem of 'ext4'

(continues on next page)

186 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

235 # then cloud-init will select the 2nd partition, even though there
236 # is a partition match at the 4th partition.
237 #
238 # If you ask for 'any' and a label of 'test', then cloud-init will
239 # select the 1st partition.
240 #
241 # If you ask for 'auto' and don't define label, then cloud-init will
242 # select the 1st partition.
243 #
244 # In general, if you have a specific partition configuration in mind,
245 # you should define either the device or the partition number. 'auto'
246 # and 'any' are specifically intended for formatting ephemeral storage
247 # or for simple schemes.
248 #
249 # "none": Put the filesystem directly on the device.
250 #
251 # <NUM>: where NUM is the actual partition number.
252 #
253 # <OVERWRITE>: Defines whether or not to overwrite any existing
254 # filesystem.
255 #
256 # "true": Indiscriminately destroy any pre-existing filesystem. Use at
257 # your own peril.
258 #
259 # "false": If an existing filesystem exists, skip the creation.
260 #
261 # <REPLACE_FS>: This is a special directive, used for Microsoft Azure that
262 # instructs cloud-init to replace a filesystem of <FS_TYPE>. NOTE:
263 # unless you define a label, this requires the use of the 'any' partition
264 # directive.
265 #
266 # Behavior Caveat: The default behavior is to _check_ if the filesystem exists.
267 # If a filesystem matches the specification, then the operation is a no-op.

Configure data sources

1 #cloud-config
2

3 # Documentation on data sources configuration options
4 datasource:
5 # Ec2
6 Ec2:
7 # timeout: the timeout value for a request at metadata service
8 timeout : 50
9 # The length in seconds to wait before giving up on the metadata

10 # service. The actual total wait could be up to
11 # len(resolvable_metadata_urls)*timeout
12 max_wait : 120
13

14 #metadata_url: a list of URLs to check for metadata services
(continues on next page)

2.4. Reference 187

cloud-init, Release 24.1.3

(continued from previous page)

15 metadata_urls:
16 - http://169.254.169.254:80
17 - http://instance-data:8773
18

19 MAAS:
20 timeout : 50
21 max_wait : 120
22

23 # there are no default values for metadata_url or oauth credentials
24 # If no credentials are present, non-authed attempts will be made.
25 metadata_url: http://mass-host.localdomain/source
26 consumer_key: Xh234sdkljf
27 token_key: kjfhgb3n
28 token_secret: 24uysdfx1w4
29

30 NoCloud:
31 # default seedfrom is None
32 # if found, then it should contain a url with:
33 # <url>/user-data and <url>/meta-data
34 # seedfrom: http://my.example.com/i-abcde/
35 seedfrom: None
36

37 # fs_label: the label on filesystems to be searched for NoCloud source
38 fs_label: cidata
39

40 # these are optional, but allow you to basically provide a datasource
41 # right here
42 user-data: |
43 # This is the user-data verbatim
44 meta-data:
45 instance-id: i-87018aed
46 local-hostname: myhost.internal
47

48 SmartOS:
49 # For KVM guests:
50 # Smart OS datasource works over a serial console interacting with
51 # a server on the other end. By default, the second serial console is the
52 # device. SmartOS also uses a serial timeout of 60 seconds.
53 serial_device: /dev/ttyS1
54 serial_timeout: 60
55

56 # For LX-Brand Zones guests:
57 # Smart OS datasource works over a socket interacting with
58 # the host on the other end. By default, the socket file is in
59 # the native .zoncontrol directory.
60 metadata_sockfile: /native/.zonecontrol/metadata.sock
61

62 # a list of keys that will not be base64 decoded even if base64_all
63 no_base64_decode: ['root_authorized_keys', 'motd_sys_info',
64 'iptables_disable']
65 # a plaintext, comma delimited list of keys whose values are b64 encoded
66 base64_keys: []

(continues on next page)

188 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

67 # a boolean indicating that all keys not in 'no_base64_decode' are encoded
68 base64_all: False

Create partitions and filesystems

1 #cloud-config
2 # Cloud-init supports the creation of simple partition tables and filesystems
3 # on devices.
4

5 # Default disk definitions for AWS
6 # --------------------------------
7 # (Not implemented yet, but provided for future documentation)
8

9 disk_setup:
10 ephemeral0:
11 table_type: 'mbr'
12 layout: True
13 overwrite: False
14

15 fs_setup:
16 - label: None,
17 filesystem: ext3
18 device: ephemeral0
19 partition: auto
20

21 # Default disk definitions for Microsoft Azure
22 # --
23

24 device_aliases: {'ephemeral0': '/dev/sdb'}
25 disk_setup:
26 ephemeral0:
27 table_type: mbr
28 layout: True
29 overwrite: False
30

31 fs_setup:
32 - label: ephemeral0
33 filesystem: ext4
34 device: ephemeral0.1
35 replace_fs: ntfs
36

37

38 # Data disks definitions for Microsoft Azure
39 # --
40

41 disk_setup:
42 /dev/disk/azure/scsi1/lun0:
43 table_type: gpt
44 layout: True
45 overwrite: True

(continues on next page)

2.4. Reference 189

cloud-init, Release 24.1.3

(continued from previous page)

46

47 fs_setup:
48 - device: /dev/disk/azure/scsi1/lun0
49 partition: 1
50 filesystem: ext4
51

52

53 # Default disk definitions for SmartOS
54 # ------------------------------------
55

56 device_aliases: {'ephemeral0': '/dev/vdb'}
57 disk_setup:
58 ephemeral0:
59 table_type: mbr
60 layout: False
61 overwrite: False
62

63 fs_setup:
64 - label: ephemeral0
65 filesystem: ext4
66 device: ephemeral0.0
67

68 # Caveat for SmartOS: if ephemeral disk is not defined, then the disk will
69 # not be automatically added to the mounts.
70

71

72 # The default definition is used to make sure that the ephemeral storage is
73 # setup properly.
74

75 # "disk_setup": disk partitioning
76 # --------------------------------
77

78 # The disk_setup directive instructs Cloud-init to partition a disk. The format is:
79

80 disk_setup:
81 ephemeral0:
82 table_type: 'mbr'
83 layout: true
84 /dev/xvdh:
85 table_type: 'mbr'
86 layout:
87 - 33
88 - [33, 82]
89 - 33
90 overwrite: True
91

92 # The format is a list of dicts of dicts. The first value is the name of the
93 # device and the subsequent values define how to create and layout the
94 # partition.
95 # The general format is:
96 # disk_setup:
97 # <DEVICE>:

(continues on next page)

190 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

98 # table_type: 'mbr'
99 # layout: <LAYOUT|BOOL>

100 # overwrite: <BOOL>
101 #
102 # Where:
103 # <DEVICE>: The name of the device. 'ephemeralX' and 'swap' are special
104 # values which are specific to the cloud. For these devices
105 # Cloud-init will look up what the real devices is and then
106 # use it.
107 #
108 # For other devices, the kernel device name is used. At this
109 # time only simply kernel devices are supported, meaning
110 # that device mapper and other targets may not work.
111 #
112 # Note: At this time, there is no handling or setup of
113 # device mapper targets.
114 #
115 # table_type=<TYPE>: Currently the following are supported:
116 # 'mbr': default and setups a MS-DOS partition table
117 # 'gpt': setups a GPT partition table
118 #
119 # Note: At this time only 'mbr' and 'gpt' partition tables
120 # are allowed. It is anticipated in the future that
121 # we'll also have "RAID" to create a mdadm RAID.
122 #
123 # layout={...}: The device layout. This is a list of values, with the
124 # percentage of disk that partition will take.
125 # Valid options are:
126 # [<SIZE>, [<SIZE>, <PART_TYPE]]
127 #
128 # Where <SIZE> is the _percentage_ of the disk to use, while
129 # <PART_TYPE> is the numerical value of the partition type.
130 #
131 # The following setups two partitions, with the first
132 # partition having a swap label, taking 1/3 of the disk space
133 # and the remainder being used as the second partition.
134 # /dev/xvdh':
135 # table_type: 'mbr'
136 # layout:
137 # - [33,82]
138 # - 66
139 # overwrite: True
140 #
141 # When layout is "true" it means single partition the entire
142 # device.
143 #
144 # When layout is "false" it means don't partition or ignore
145 # existing partitioning.
146 #
147 # If layout is set to "true" and overwrite is set to "false",
148 # it will skip partitioning the device without a failure.
149 #

(continues on next page)

2.4. Reference 191

cloud-init, Release 24.1.3

(continued from previous page)

150 # overwrite=<BOOL>: This describes whether to ride with safetys on and
151 # everything holstered.
152 #
153 # 'false' is the default, which means that:
154 # 1. The device will be checked for a partition table
155 # 2. The device will be checked for a filesystem
156 # 3. If either a partition of filesystem is found, then
157 # the operation will be _skipped_.
158 #
159 # 'true' is cowboy mode. There are no checks and things are
160 # done blindly. USE with caution, you can do things you
161 # really, really don't want to do.
162 #
163 #
164 # fs_setup: Setup the filesystem
165 # ------------------------------
166 #
167 # fs_setup describes the how the filesystems are supposed to look.
168

169 fs_setup:
170 - label: ephemeral0
171 filesystem: 'ext3'
172 device: 'ephemeral0'
173 partition: 'auto'
174 - label: mylabl2
175 filesystem: 'ext4'
176 device: '/dev/xvda1'
177 - cmd: mkfs -t %(filesystem)s -L %(label)s %(device)s
178 label: mylabl3
179 filesystem: 'btrfs'
180 device: '/dev/xvdh'
181

182 # The general format is:
183 # fs_setup:
184 # - label: <LABEL>
185 # filesystem: <FS_TYPE>
186 # device: <DEVICE>
187 # partition: <PART_VALUE>
188 # overwrite: <OVERWRITE>
189 # replace_fs: <FS_TYPE>
190 #
191 # Where:
192 # <LABEL>: The filesystem label to be used. If set to None, no label is
193 # used.
194 #
195 # <FS_TYPE>: The filesystem type. It is assumed that the there
196 # will be a "mkfs.<FS_TYPE>" that behaves likes "mkfs". On a standard
197 # Ubuntu Cloud Image, this means that you have the option of ext{2,3,4},
198 # and vfat by default.
199 #
200 # <DEVICE>: The device name. Special names of 'ephemeralX' or 'swap'
201 # are allowed and the actual device is acquired from the cloud datasource.

(continues on next page)

192 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

202 # When using 'ephemeralX' (i.e. ephemeral0), make sure to leave the
203 # label as 'ephemeralX' otherwise there may be issues with the mounting
204 # of the ephemeral storage layer.
205 #
206 # If you define the device as 'ephemeralX.Y' then Y will be interpetted
207 # as a partition value. However, ephermalX.0 is the _same_ as ephemeralX.
208 #
209 # <PART_VALUE>:
210 # Partition definitions are overwritten if you use the '<DEVICE>.Y' notation.
211 #
212 # The valid options are:
213 # "auto|any": tell cloud-init not to care whether there is a partition
214 # or not. Auto will use the first partition that does not contain a
215 # filesystem already. In the absence of a partition table, it will
216 # put it directly on the disk.
217 #
218 # "auto": If a filesystem that matches the specification in terms of
219 # label, filesystem and device, then cloud-init will skip the creation
220 # of the filesystem.
221 #
222 # "any": If a filesystem that matches the filesystem type and device,
223 # then cloud-init will skip the creation of the filesystem.
224 #
225 # Devices are selected based on first-detected, starting with partitions
226 # and then the raw disk. Consider the following:
227 # NAME FSTYPE LABEL
228 # xvdb
229 # |-xvdb1 ext4
230 # |-xvdb2
231 # |-xvdb3 btrfs test
232 # \-xvdb4 ext4 test
233 #
234 # If you ask for 'auto', label of 'test, and filesystem of 'ext4'
235 # then cloud-init will select the 2nd partition, even though there
236 # is a partition match at the 4th partition.
237 #
238 # If you ask for 'any' and a label of 'test', then cloud-init will
239 # select the 1st partition.
240 #
241 # If you ask for 'auto' and don't define label, then cloud-init will
242 # select the 1st partition.
243 #
244 # In general, if you have a specific partition configuration in mind,
245 # you should define either the device or the partition number. 'auto'
246 # and 'any' are specifically intended for formatting ephemeral storage
247 # or for simple schemes.
248 #
249 # "none": Put the filesystem directly on the device.
250 #
251 # <NUM>: where NUM is the actual partition number.
252 #
253 # <OVERWRITE>: Defines whether or not to overwrite any existing

(continues on next page)

2.4. Reference 193

cloud-init, Release 24.1.3

(continued from previous page)

254 # filesystem.
255 #
256 # "true": Indiscriminately destroy any pre-existing filesystem. Use at
257 # your own peril.
258 #
259 # "false": If an existing filesystem exists, skip the creation.
260 #
261 # <REPLACE_FS>: This is a special directive, used for Microsoft Azure that
262 # instructs cloud-init to replace a filesystem of <FS_TYPE>. NOTE:
263 # unless you define a label, this requires the use of the 'any' partition
264 # directive.
265 #
266 # Behavior Caveat: The default behavior is to _check_ if the filesystem exists.
267 # If a filesystem matches the specification, then the operation is a no-op.

2.4.3 CLI commands

For the latest list of subcommands and arguments use cloud-init’s --help option. This can be used against
cloud-init itself, or on any of its subcommands.

$ cloud-init --help

Example output:

usage: cloud-init [-h] [--version] [--debug] [--force]
{init,modules,single,query,

→˓features,analyze,devel,collect-logs,clean,status,schema} ...

options:
-h, --help show this help message and exit
--version, -v Show program's version number and exit.
--debug, -d Show additional pre-action logging (default: False).
--force Force running even if no datasource is found (use at your own␣

→˓risk).

Subcommands:
{init,modules,single,query,features,analyze,devel,collect-logs,clean,status,schema}
init Initialize cloud-init and perform initial modules.
modules Activate modules using a given configuration key.
single Run a single module.
query Query standardized instance metadata from the command line.
features List defined features.
analyze Devel tool: Analyze cloud-init logs and data.
devel Run development tools.
collect-logs Collect and tar all cloud-init debug info.
clean Remove logs and artifacts so cloud-init can re-run.
status Report cloud-init status or wait on completion.
schema Validate cloud-config files using jsonschema.

The rest of this document will give an overview of each of the subcommands.

194 Chapter 2. Project and community

cloud-init, Release 24.1.3

analyze

Get detailed reports of where cloud-init spends its time during the boot process. For more complete reference see
Performance.

Possible subcommands include:

• blame: report ordered by most costly operations.

• dump: machine-readable JSON dump of all cloud-init tracked events.

• show: show time-ordered report of the cost of operations during each boot stage.

• boot: show timestamps from kernel initialisation, kernel finish initialisation, and cloud-init start.

clean

Remove cloud-init artifacts from /var/lib/cloud and config files (best effort) to simulate a clean instance. On
reboot, cloud-init will re-run all stages as it did on first boot.

• --logs: Optionally remove all cloud-init log files in /var/log/.

• --reboot: Reboot the system after removing artifacts.

• --machine-id: Set /etc/machine-id to uninitialized\n on this image for systemd environments. On
distributions without systemd, remove the file. Best practice when cloning a golden image, to ensure the next
boot of that image auto-generates a unique machine ID. More details on machine-id.

• --configs [all | ssh_config | network]: Optionally remove all cloud-init generated config files.
Argument ssh_config cleans config files for ssh daemon. Argument network removes all generated config files
for network. all removes config files of all types.

Note: Cloud-init provides the directory /etc/cloud/clean.d/ for third party applications which need additional
configuration artifact cleanup from the filesystem when the clean command is invoked.

The clean operation is typically performed by image creators when preparing a golden image for clone and redeploy-
ment. The clean command removes any cloud-init semaphores, allowing cloud-init to treat the next boot of this image
as the “first boot”. When the image is next booted cloud-init will performing all initial configuration based on any valid
datasource meta-data and user-data.

Any executable scripts in this subdirectory will be invoked in lexicographical order with run-parts when running the
clean command.

Typical format of such scripts would be a ##-<some-app> like the following: /etc/cloud/clean.d/
99-live-installer

An example of a script is:

sudo rm -rf /var/lib/installer_imgs/
sudo rm -rf /var/log/installer/

2.4. Reference 195

https://www.freedesktop.org/software/systemd/man/machine-id.html

cloud-init, Release 24.1.3

collect-logs

Collect and tar cloud-init-generated logs, data files, and system information for triage. This subcommand is inte-
grated with apport.

Logs collected include:

• /var/log/cloud-init.log

• /var/log/cloud-init-output.log

• /run/cloud-init

• /var/lib/cloud/instance/user-data.txt

• cloud-init package version

• dmesg output

• journalctl output

Note: Ubuntu users can file bugs using ubuntu-bug cloud-init to automatically attach these logs to a bug report.

devel

Collection of development tools under active development. These tools will likely be promoted to top-level subcom-
mands when stable.

Do NOT rely on the output of these commands as they can and will change.

Current subcommands:

net-convert

Manually use cloud-init’s network format conversion. Useful for testing configuration or testing changes to the
network conversion logic itself.

render

Use cloud-init’s jinja template render to process #cloud-config or custom-scripts, injecting any variables from
/run/cloud-init/instance-data.json. It accepts a user data file containing the jinja template header ##
template: jinja and renders that content with any instance-data.json variables present.

hotplug-hook

Hotplug related subcommands. This command is intended to be called via a systemd service and is not considered
user-accessible except for debugging purposes.

196 Chapter 2. Project and community

cloud-init, Release 24.1.3

query

Query if hotplug is enabled for a given subsystem.

handle

Respond to newly added system devices by retrieving updated system metadata and bringing up/down the corresponding
device.

enable

Enable hotplug for a given subsystem. This is a last resort command for administrators to enable hotplug in running
instances. The recommended method is configuring Events and updates, if not enabled by default in the active data-
source.

features

Print out each feature supported. If cloud-init does not have the features subcommand, it also does not support
any features described in this document.

$ cloud-init features

Example output:

NETWORK_CONFIG_V1
NETWORK_CONFIG_V2

init

Generally run by OS init systems to execute cloud-init’s stages: init and init-local. See Boot stages for more info.
Can be run on the commandline, but is generally gated to run only once due to semaphores in /var/lib/cloud/
instance/sem/ and /var/lib/cloud/sem.

• --local: Run init-local stage instead of init.

• --file : Use additional yaml configuration files.

modules

Generally run by OS init systems to execute modules:config and modules:final boot stages. This executes cloud
config Module reference configured to run in the Init, Config and Final stages. The modules are declared to run in
various boot stages in the file /etc/cloud/cloud.cfg under keys:

• cloud_init_modules

• cloud_config_modules

• cloud_final_modules

Can be run on the command line, but each module is gated to run only once due to semaphores in /var/lib/cloud/.

• --mode [init|config|final]: Run modules:init, modules:config or modules:final cloud-init
stages. See Boot stages for more info.

2.4. Reference 197

cloud-init, Release 24.1.3

• --file : Use additional yaml configuration files.

Warning: –mode init is deprecated in 24.1 and scheduled to be removed in 29.1. Use cloud-init init instead.

query

Query standardised cloud instance metadata crawled by cloud-init and stored in /run/cloud-init/
instance-data.json. This is a convenience command-line interface to reference any cached configuration metadata
that cloud-init crawls when booting the instance. See Instance metadata for more info.

• --all: Dump all available instance data as JSON which can be queried.

• --instance-data: Optional path to a different instance-data.json file to source for queries.

• --list-keys: List available query keys from cached instance data.

• --format: A string that will use jinja-template syntax to render a string replacing.

• <varname>: A dot-delimited variable path into the instance-data.json object.

Below demonstrates how to list all top-level query keys that are standardised aliases:

$ cloud-init query --list-keys

Example output:

_beta_keys
availability_zone
base64_encoded_keys
cloud_name
ds
instance_id
local_hostname
platform
public_ssh_keys
region
sensitive_keys
subplatform
userdata
v1
vendordata

Here are a few examples of how to query standardised metadata from clouds:

$ cloud-init query v1.cloud_name

Example output:

aws # or openstack, azure, gce etc.

Any standardised instance-data under a <v#> key is aliased as a top-level key for convenience:

$ cloud-init query cloud_name

Example output:

198 Chapter 2. Project and community

cloud-init, Release 24.1.3

aws # or openstack, azure, gce etc.

One can also query datasource-specific metadata on EC2, e.g.:

$ cloud-init query ds.meta_data.public_ipv4

Note: The standardised instance data keys under v# are guaranteed not to change behaviour or format. If using top-
level convenience aliases for any standardised instance data keys, the most value (highest v#) of that key name is what
is reported as the top-level value. So these aliases act as a ‘latest’.

This data can then be formatted to generate custom strings or data. For example, we can generate a custom hostname
FQDN based on instance-id, cloud and region:

$ cloud-init query --format 'custom-{{instance_id}}.{{region}}.{{v1.cloud_name}}.com'

custom-i-0e91f69987f37ec74.us-east-2.aws.com

schema

Validate cloud-config files using jsonschema.

• -h, --help: Show this help message and exit.

• -c CONFIG_FILE, --config-file CONFIG_FILE: Path of the cloud-config YAML file to validate.

• -t SCHEMA_TYPE, --schema-type SCHEMA_TYPE: The schema type to validate –config-file against. One of:
cloud-config, network-config. Default: cloud-config.

• --system: Validate the system cloud-config user data.

• -d DOCS [cc_module ...], --docs DOCS [cc_module ...]: Print schema module docs. Choices are:
“all” or “space-delimited” cc_names.

• --annotate: Annotate existing cloud-config file with errors.

The following example checks a config file and annotates the config file with errors on stdout.

$ cloud-init schema -c ./config.yml --annotate

single

Attempt to run a single, named, cloud config module.

• --name: The cloud-config module name to run.

• --frequency: Module frequency for this run. One of (always``|``instance``|``once).

• --report: Enable reporting.

• --file : Use additional yaml configuration files.

The following example re-runs the cc_set_hostname module ignoring the module default frequency of instance:

$ cloud-init single --name set_hostname --frequency always

2.4. Reference 199

cloud-init, Release 24.1.3

Note: Mileage may vary trying to re-run each cloud-config module, as some are not idempotent.

status

Report cloud-init’s current status.

Exits 1 if cloud-init crashes, 2 if cloud-init finishes but experienced recoverable errors, and 0 if cloud-init
ran without error.

• --long: Detailed status information.

• --wait: Block until cloud-init completes.

• --format [yaml|json]: Machine-readable JSON or YAML detailed output.

The status command can be used simply as follows:

$ cloud-init status

Which shows whether cloud-init is currently running, done, disabled, or in error. Note that the extended_status
key in --long or --format json contains more accurate and complete status information. Example output:

status: running

The --long option, shown below, provides a more verbose output.

$ cloud-init status --long

Example output when cloud-init is running:

status: running
extended_status: running
boot_status_code: enabled-by-generator
last_update: Wed, 13 Mar 2024 18:46:26 +0000
detail: DataSourceLXD
errors: []
recoverable_errors: {}

Example output when cloud-init is done:

status: done
extended_status: done
boot_status_code: enabled-by-generator
last_update: Wed, 13 Mar 2024 18:46:26 +0000
detail: DataSourceLXD
errors: []
recoverable_errors: {}

The detailed output can be shown in machine-readable JSON or YAML with the format option, for example:

$ cloud-init status --format=json

Which would produce the following example output:

200 Chapter 2. Project and community

cloud-init, Release 24.1.3

{
"boot_status_code": "enabled-by-generator",
"datasource": "lxd",
"detail": "DataSourceLXD",
"errors": [],
"extended_status": "done",
"init": {
"errors": [],
"finished": 1710355584.3603137,
"recoverable_errors": {},
"start": 1710355584.2216876

},
"init-local": {
"errors": [],
"finished": 1710355582.279756,
"recoverable_errors": {},
"start": 1710355582.2255273

},
"last_update": "Wed, 13 Mar 2024 18:46:26 +0000",
"modules-config": {
"errors": [],
"finished": 1710355585.5042186,
"recoverable_errors": {},
"start": 1710355585.334438

},
"modules-final": {
"errors": [],
"finished": 1710355586.9038777,
"recoverable_errors": {},
"start": 1710355586.8076844

},
"recoverable_errors": {},
"stage": null,
"status": "done"

}

2.4.4 Availability

Below outlines the current availability of cloud-init across distributions and clouds, both public and private.

Note: If a distribution or cloud does not show up in the list below, contact them and ask for images to be generated
using cloud-init!

2.4. Reference 201

cloud-init, Release 24.1.3

Distributions

Cloud-init has support across all major Linux distributions, FreeBSD, NetBSD, OpenBSD and DragonFlyBSD:

• Alpine Linux

• Arch Linux

• Debian

• DragonFlyBSD

• Fedora

• FreeBSD

• Gentoo Linux

• NetBSD

• OpenBSD

• Photon OS

• RHEL/CentOS/AlmaLinux/Rocky Linux/EuroLinux

• SLES/openSUSE

• Ubuntu

Clouds

Cloud-init provides support across a wide ranging list of execution environments in the public cloud:

• Amazon Web Services

• Microsoft Azure

• Google Cloud Platform

• Oracle Cloud Infrastructure

• Softlayer

• Rackspace Public Cloud

• IBM Cloud

• DigitalOcean

• Bigstep

• Hetzner

• Joyent

• CloudSigma

• Alibaba Cloud

• OVH

• OpenNebula

• Exoscale

• Scaleway

• CloudStack

202 Chapter 2. Project and community

cloud-init, Release 24.1.3

• AltCloud

• SmartOS

• UpCloud

• Vultr

• Zadara Edge Cloud Platform

• 3DS Outscale

• Akamai

Additionally, cloud-init is supported on these private clouds:

• Bare metal installs

• OpenStack

• LXD

• KVM

• Metal-as-a-Service (MAAS)

• VMware

2.4.5 FAQ

How do I get help?

Having trouble? We would like to help!

• First go through this page with answers to common questions

• Use the search bar at the upper left to search our documentation

• Ask questions in the #cloud-init IRC channel on Libera

• Join and ask questions on the cloud-init mailing list

• Find a bug? Check out the Reporting bugs topic to find out how to report one

autoinstall, preruncmd, postruncmd

Since cloud-init ignores top level user data cloud-config keys, other projects such as Juju and Subiquity autoin-
staller use a YAML-formatted config that combines cloud-init’s user data cloud-config YAML format with their
custom YAML keys. Since cloud-init ignores unused top level keys, these combined YAML configurations may
be valid cloud-config files, however keys such as autoinstall, preruncmd, and postruncmd are not used by
cloud-init to configure anything.

Please direct bugs and questions about other projects that use cloud-init to their respective support channels. For
Subiquity autoinstaller that is via IRC (#ubuntu-server on Libera) or Discourse. For Juju support see their discourse
page.

2.4. Reference 203

https://kiwiirc.com/nextclient/irc.libera.chat/cloud-init
https://launchpad.net/~cloud-init
https://ubuntu.com/blog/topics/juju
https://ubuntu.com/server/docs/install/autoinstall
https://ubuntu.com/server/docs/install/autoinstall
https://discourse.charmhub.io
https://discourse.charmhub.io

cloud-init, Release 24.1.3

Can I use cloud-init as a library?

Please don’t. Some projects do. However, cloud-init does not currently make any API guarantees to either external
consumers or out-of-tree datasources / modules. Current users of cloud-init as a library are projects that have close
contact with cloud-init, which is why this (fragile) model currently works.

For those that choose to ignore this advice, logging in cloud-init is configured in cloud-init/cmd/main.py, and
reconfigured in the cc_rsyslog module for obvious reasons.

Where can I learn more?

Below are some videos, blog posts, and white papers about cloud-init from a variety of sources.

Videos:

• cloud-init - The Good Parts

• Perfect Proxmox Template with Cloud Image and Cloud Init [proxmox, cloud-init, template]

• cloud-init - Building clouds one Linux box at a time (Video)

• Metadata and cloud-init

• Introduction to cloud-init

Blog Posts:

• cloud-init - The cross-cloud Magic Sauce (PDF)

• cloud-init - Building clouds one Linux box at a time (PDF)

• The beauty of cloud-init

• Cloud-init Getting Started [fedora, libvirt, cloud-init]

• Build Azure Devops Agents With Linux cloud-init for Dotnet Development [terraform, azure, devops, docker,
dotnet, cloud-init]

• Cloud-init Getting Started [fedora, libvirt, cloud-init]

• Setup Neovim cloud-init Completion [neovim, yaml, Language Server Protocol, jsonschema, cloud-init]

Events:

• cloud-init Summit 2019

• cloud-init Summit 2018

• cloud-init Summit 2017

Whitepapers:

• Utilising cloud-init on Microsoft Azure (Whitepaper)

• Cloud Instance Initialization with cloud-init (Whitepaper)

204 Chapter 2. Project and community

https://github.com/canonical/ubuntu-pro-client/blob/9b46480b9e4b88e918bac5ced0d4b8edb3cbbeab/lib/auto_attach.py#L35
https://www.youtube.com/watch?v=2_m6EUo6VOI
https://www.youtube.com/watch?v=shiIi38cJe4
https://www.youtube.com/watch?v=1joQfUZQcPg
https://www.youtube.com/watch?v=RHVhIWifVqU
http://www.youtube.com/watch?v=-zL3BdbKyGY
https://events.linuxfoundation.org/wp-content/uploads/2017/12/cloud-init-The-cross-cloud-Magic-Sauce-Scott-Moser-Chad-Smith-Canonical.pdf
https://web.archive.org/web/20181111020605/https://annex.debconf.org/debconf-share/debconf17/slides/164-cloud-init_Building_clouds_one_Linux_box_at_a_time.pdf
https://web.archive.org/web/20180830161317/http://brandon.fuller.name/archives/2011/05/02/06.40.57/
https://blog.while-true-do.io/cloud-init-getting-started/
https://codingsoul.org/2022/04/25/build-azure-devops-agents-with-linux-cloud-init-for-dotnet-development/
https://blog.while-true-do.io/cloud-init-getting-started/
https://phoenix-labs.xyz/blog/setup-neovim-cloud-init-completion/
https://powersj.io/post/cloud-init-summit19/
https://powersj.io/post/cloud-init-summit18/
https://powersj.io/post/cloud-init-summit17/
https://ubuntu.com/engage/azure-cloud-init-whitepaper
https://ubuntu.com/blog/cloud-instance-initialisation-with-cloud-init

cloud-init, Release 24.1.3

2.4.6 Merging user data sections

The ability to merge user data sections allows a way to specify how cloud-config YAML “dictionaries” provided as
user data are handled when there are multiple YAML files to be merged together (e.g., when performing an #include).

For example merging these two configurations:

#cloud-config (1)
runcmd:
- bash1
- bash2

#cloud-config (2)
runcmd:
- bash3
- bash4

Yields the following merged config:

#cloud-config (merged)
runcmd:
- bash1
- bash2
- bash3
- bash4

Built-in mergers

Cloud-init provides merging for the following built-in types:

• Dict

• List

• String

Dict

The Dict merger has the following options, which control what is done with values contained within the config.

• allow_delete: Existing values not present in the new value can be deleted. Defaults to False.

• no_replace: Do not replace an existing value if one is already present. Enabled by default.

• replace: Overwrite existing values with new ones.

2.4. Reference 205

cloud-init, Release 24.1.3

List

The List merger has the following options, which control what is done with the values contained within the config.

• append: Add new value to the end of the list. Defaults to False.

• prepend: Add new values to the start of the list. Defaults to False.

• no_replace: Do not replace an existing value if one is already present. Enabled by default.

• replace: Overwrite existing values with new ones.

String

The Str merger has the following options, which control what is done with the values contained within the config.

• append: Add new value to the end of the string. Defaults to False.

Common options

These are the common options for all merge types, which control how recursive merging is done on other types.

• recurse_dict: If True, merge the new values of the dictionary. Defaults to True.

• recurse_list: If True, merge the new values of the list. Defaults to False.

• recurse_array: Alias for recurse_list.

• recurse_str: If True, merge the new values of the string. Defaults to False.

Customisation

Because the above merging algorithm may not always be desired (just as the previous merging algorithm was not always
the preferred one), the concept of customised merging was introduced through merge classes.

A merge class is a class definition providing functions that can be used to merge a given type with another given type.

An example of one of these merging classes is the following:

class Merger:
def __init__(self, merger, opts):

self._merger = merger
self._overwrite = 'overwrite' in opts

This merging algorithm will attempt to merge with
another dictionary, on encountering any other type of object
it will not merge with said object, but will instead return
the original value
#
On encountering a dictionary, it will create a new dictionary
composed of the original and the one to merge with, if 'overwrite'
is enabled then keys that exist in the original will be overwritten
by keys in the one to merge with (and associated values). Otherwise
if not in overwrite mode the 2 conflicting keys themselves will
be merged.
def _on_dict(self, value, merge_with):

(continues on next page)

206 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

if not isinstance(merge_with, (dict)):
return value

merged = dict(value)
for (k, v) in merge_with.items():

if k in merged:
if not self._overwrite:

merged[k] = self._merger.merge(merged[k], v)
else:

merged[k] = v
else:

merged[k] = v
return merged

As you can see, there is an _on_dict method here that will be given a source value, and a value to merge with. The
result will be the merged object.

This code itself is called by another merging class which “directs” the merging to happen by analysing the object types
to merge, and attempting to find a known object that will merge that type. An example of this can be found in the
mergers/__init__.py file (see LookupMerger and UnknownMerger).

So, following the typical cloud-init approach of allowing source code to be downloaded and used dynamically, it is
possible for users to inject their own merging files to handle specific types of merging as they choose (the basic ones
included will handle lists, dicts, and strings). Note how each merge can have options associated with it, which affect
how the merging is performed. For example, a dictionary merger can be told to overwrite instead of attempting to
merge, or a string merger can be told to append strings instead of discarding other strings to merge with.

How to activate

There are a few ways to activate the merging algorithms, and to customise them for your own usage.

1. The first way involves the usage of MIME messages in cloud-init to specify multi-part documents (this is
one way in which multiple cloud-config can be joined together into a single cloud-config). Two new headers
are looked for, both of which can define the way merging is done (the first header to exist “wins”). These new
headers (in lookup order) are 'Merge-Type' and 'X-Merge-Type'. The value should be a string which will
satisfy the new merging format definition (see below for this format).

2. The second way is to specify the merge type in the body of the cloud-config dictionary. There are two ways to
specify this; either as a string, or as a dictionary (see format below). The keys that are looked up for this definition
are the following (in order): 'merge_how', 'merge_type'.

String format

The following string format is expected:

classname1(option1,option2)+classname2(option3,option4)....

The class name will be connected to class names used when looking for the class that can be used to merge, and
options provided will be given to the class upon construction of that class.

The following example shows the default string that gets used when none is otherwise provided:

list()+dict()+str()

2.4. Reference 207

cloud-init, Release 24.1.3

Dictionary format

A dictionary can be used when it specifies the same information as the string format (i.e., the second option above).
For example:

{'merge_how': [{'name': 'list', 'settings': ['append']},
{'name': 'dict', 'settings': ['no_replace', 'recurse_list']},
{'name': 'str', 'settings': ['append']}]}

This would be the dictionary equivalent of the default string format.

Specifying multiple types, and what this does

Now you may be asking yourself: “What exactly happens if I specify a merge-type header or dictionary for every
cloud-config I provide?”

The answer is that when merging, a stack of 'merging classes' is kept. The first one in the stack is the default
merging class. This set of mergers will be used when the first cloud-config is merged with the initial empty cloud-
config dictionary. If the cloud-config that was just merged provided a set of merging classes (via the above formats)
then those merging classes will be pushed onto the stack. Now if there is a second cloud-config to be merged then the
merging classes from the cloud-config before the first will be used (not the default) and so on. In this way a cloud-config
can decide how it will merge with a cloud-config dictionary coming after it.

Other uses

In addition to being used for merging user data sections, the default merging algorithm for merging 'conf.d' YAML
files (which form an initial YAML config for cloud-init) was also changed to use this mechanism, to take advantage
of the full benefits (and customisation) here as well. Other places that used the previous merging are also, similarly,
now extensible (metadata merging, for example).

Note, however, that merge algorithms are not used across configuration types. As was the case before merging was
implemented, user data will overwrite 'conf.d' configuration without merging.

Example cloud-config

A common request is to include multiple runcmd directives in different files and merge all of the commands together.
To achieve this, we must modify the default merging to allow for dictionaries to join list values.

The first config:

#cloud-config
merge_how:
- name: list
settings: [append]

- name: dict
settings: [no_replace, recurse_list]

runcmd:
- bash1
- bash2

The second config:

208 Chapter 2. Project and community

cloud-init, Release 24.1.3

#cloud-config
merge_how:
- name: list
settings: [append]

- name: dict
settings: [no_replace, recurse_list]

runcmd:
- bash3
- bash4

2.4.7 Datasources

Datasources are sources of configuration data for cloud-init that typically come from the user (i.e., user data) or
come from the cloud that created the configuration drive (i.e., metadata). Typical user data includes files, YAML, and
shell scripts whereas typical metadata includes server name, instance id, display name, and other cloud specific details.

Any metadata processed by cloud-init’s datasources is persisted as /run/cloud-init/instance-data.json.
Cloud-init provides tooling to quickly introspect some of that data. See Instance metadata for more information.

How to configure which datasource to use

By default cloud-init should automatically determine which datasource it is running on. Therefore, in most cases,
users of cloud-init should not have to configure cloud-init to specify which datasource cloud-init is running on;
cloud-init should “figure it out”.

There are exceptions, however, when the datasource does not identify itself to cloud-init. For these exceptions, one
can override datasource detection either by configuring a single datasource in the datasource_list, or by using kernel
commandline arguments.

Datasources:

The following is a list of documentation for each supported datasource:

Akamai

The Akamai datasource provides an interface to consume metadata on the Akamai Connected Cloud. This service is
available at 169.254.169.254 and fd00:a9fe:a9fe::1 from within the instance.

Configuration

The Akamai datasource supports the following configuration, although in normal use no changes to the defaults should
be necessary:

datasource:
Akamai:
base_urls:
ipv4: http://169.254.169.254
ipv6: http://[fd00:a9fe:a9fe::1]

(continues on next page)

2.4. Reference 209

https://linode.com

cloud-init, Release 24.1.3

(continued from previous page)

paths:
token: /v1/token
metadata: /v1/instance
userdata: /v1/user-data

allow_local_stage: True
allow_init_stage: True
allow_dhcp: True
allow_ipv4: True
allow_ipv6: True
preferred_mac_prefixes:
- f2:3

• base_urls

The URLs used to access the metadata service over IPv4 and IPv6 respectively.

• paths

The paths used to reach specific endpoints within the service.

• allow_local_stage

Allows this datasource to fetch data during the local stage. This can be disabled if your image does not want
ephemeral networking used.

• allow_init_stage

Allows this datasource to fetch data during the init stage, once networking is online.

• allow_dhcp

Allows this datasource to use dhcp to find an IPv4 address to fetch metadata with during the local stage.

• allow_ipv4

Allow the use of IPv4 when fetching metadata during any stage.

• allow_ipv6

Allows the use of IPv6 when fetching metadata during any stage.

• preferred_mac_prefixes

A list of MAC Address prefixes that will be preferred when selecting an interface to use for ephemeral networking.
This is ignored during the init stage.

Configuration Overrides

In some circumstances, the Akamai platform may send configurations overrides to instances via dmi data to pre-
vent certain behavior that may not be supported based on the instance’s region or configuration. For example, if
deploying an instance in a region that does not yet support metadata, both the local and init stages will be disabled,
preventing cloud-init from attempting to fetch metadata. Configuration overrides sent this way will appears in the
baseboard-serial-number field.

210 Chapter 2. Project and community

cloud-init, Release 24.1.3

Alibaba Cloud (AliYun)

The AliYun datasource reads data from Alibaba Cloud ECS. Support is present in cloud-init since 0.7.9.

Metadata service

The Alibaba Cloud metadata service is available at the well known URL http://100.100.100.200/. For more
information see Alibaba Cloud ECS on metadata.

Configuration

The following configuration can be set for the datasource in system configuration (in /etc/cloud/cloud.cfg or
/etc/cloud/cloud.cfg.d/).

An example configuration with the default values is provided below:

datasource:
AliYun:
metadata_urls: ["http://100.100.100.200"]
timeout: 50
max_wait: 120

Versions

Like the EC2 metadata service, Alibaba Cloud’s metadata service provides versioned data under specific paths. As of
April 2018, there are only 2016-01-01 and latest versions.

It is expected that the dated version will maintain a stable interface but latest may change content at a future date.

Cloud-init uses the 2016-01-01 version.

You can list the versions available to your instance with:

$ curl http://100.100.100.200/

Example output:

2016-01-01
latest

Metadata

Instance metadata can be queried at http://100.100.100.200/2016-01-01/meta-data:

$ curl http://100.100.100.200/2016-01-01/meta-data

Example output:

2.4. Reference 211

https://www.alibabacloud.com/help/zh/faq-detail/49122.htm

cloud-init, Release 24.1.3

dns-conf/
eipv4
hostname
image-id
instance-id
instance/
mac
network-type
network/
ntp-conf/
owner-account-id
private-ipv4
public-keys/
region-id
serial-number
source-address
sub-private-ipv4-list
vpc-cidr-block
vpc-id

Userdata

If provided, user data will appear at http://100.100.100.200/2016-01-01/user-data. If no user data is pro-
vided, this will return a 404.

$ curl http://100.100.100.200/2016-01-01/user-data

Example output:

#!/bin/sh
echo "Hello World."

AltCloud

The datasource AltCloud will be used to pick up user data on RHEVm and vSphere.

RHEVm

For RHEVm v3.0 the user data is injected into the VM using floppy injection via the RHEVm dashboard “Custom
Properties”.

The format of the “Custom Properties” entry must be:

floppyinject=user-data.txt:<base64 encoded data>

For example, to pass a simple bash script:

$ cat simple_script.bash
#!/bin/bash
echo "Hello Joe!" >> /tmp/JJV_Joe_out.txt

(continues on next page)

212 Chapter 2. Project and community

https://www.redhat.com/virtualization/rhev/desktop/rhevm/
https://www.vmware.com/products/datacenter-virtualization/vsphere/overview.html
https://www.redhat.com/virtualization/rhev/desktop/rhevm/
https://www.redhat.com/virtualization/rhev/desktop/rhevm/

cloud-init, Release 24.1.3

(continued from previous page)

$ base64 < simple_script.bash
IyEvYmluL2Jhc2gKZWNobyAiSGVsbG8gSm9lISIgPj4gL3RtcC9KSlZfSm9lX291dC50eHQK

To pass this example script to cloud-init running in a RHEVm v3.0 VM set the “Custom Properties” when creating
the RHEMv v3.0 VM to:

floppyinject=user-data.
→˓txt:IyEvYmluL2Jhc2gKZWNobyAiSGVsbG8gSm9lISIgPj4gL3RtcC9KSlZfSm9lX291dC50eHQK

Note: The prefix with file name must be: floppyinject=user-data.txt:

It is also possible to launch a RHEVm v3.0 VM and pass optional user data to it using the Delta Cloud.

vSphere

For VMWare’s vSphere the user data is injected into the VM as an ISO via the CD-ROM. This can be done using the
vSphere dashboard by connecting an ISO image to the CD/DVD drive.

To pass this example script to cloud-init running in a vSphere VM set the CD/DVD drive when creating the vSphere
VM to point to an ISO on the data store.

Note: The ISO must contain the user data.

For example, to pass the same simple_script.bash to vSphere:

Create the ISO

$ mkdir my-iso

Note: The file name on the ISO must be: user-data.txt

$ cp simple_script.bash my-iso/user-data.txt
$ genisoimage -o user-data.iso -r my-iso

Verify the ISO

$ sudo mkdir /media/vsphere_iso
$ sudo mount -o loop user-data.iso /media/vsphere_iso
$ cat /media/vsphere_iso/user-data.txt
$ sudo umount /media/vsphere_iso

Then, launch the vSphere VM the ISO user-data.iso attached as a CD-ROM.

It is also possible to launch a vSphere VM and pass optional user data to it using the Delta Cloud.

2.4. Reference 213

https://www.redhat.com/virtualization/rhev/desktop/rhevm/
https://www.redhat.com/virtualization/rhev/desktop/rhevm/
http://deltacloud.apache.org
https://www.vmware.com/products/datacenter-virtualization/vsphere/overview.html
https://www.vmware.com/products/datacenter-virtualization/vsphere/overview.html
https://www.vmware.com/products/datacenter-virtualization/vsphere/overview.html
https://www.vmware.com/products/datacenter-virtualization/vsphere/overview.html
https://www.vmware.com/products/datacenter-virtualization/vsphere/overview.html

cloud-init, Release 24.1.3

Amazon EC2

The EC2 datasource is the oldest and most widely used datasource that cloud-init supports. This datasource interacts
with a magic IP provided to the instance by the cloud provider (typically this IP is 169.254.169.254). At this IP a http
server is provided to the instance so that the instance can make calls to get instance user data and instance metadata.

Metadata is accessible via the following URL:

GET http://169.254.169.254/2009-04-04/meta-data/
ami-id
ami-launch-index
ami-manifest-path
block-device-mapping/
hostname
instance-id
instance-type
local-hostname
local-ipv4
placement/
public-hostname
public-ipv4
public-keys/
reservation-id
security-groups

User data is accessible via the following URL:

GET http://169.254.169.254/2009-04-04/user-data
1234,fred,reboot,true | 4512,jimbo, | 173,,,

Note that there are multiple EC2 Metadata versions of this data provided to instances. Cloud-init attempts to use the
most recent API version it supports in order to get the latest API features and instance-data. If a given API version is
not exposed to the instance, those API features will be unavailable to the instance.

EC2 ver-
sion

supported instance-data/feature

2021-03-
23

Required for Instance tag support. This feature must be enabled individually on each instance. See
the EC2 tags user guide.

2016-09-
02

Required for secondary IP address support.

2009-04-
04

Minimum supports EC2 API version for metadata and user data.

To see which versions are supported by your cloud provider use the following URL:

GET http://169.254.169.254/
1.0
2007-01-19
2007-03-01
2007-08-29
2007-10-10
2007-12-15
2008-02-01

(continues on next page)

214 Chapter 2. Project and community

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#work-with-tags-in-IMDS

cloud-init, Release 24.1.3

(continued from previous page)

2008-09-01
2009-04-04
...
latest

Configuration settings

The following configuration can be set for the datasource in system configuration (in /etc/cloud/cloud.cfg or
/etc/cloud/cloud.cfg.d/).

The settings that may be configured are:

metadata_urls

This list of URLs will be searched for an EC2 metadata service. The first entry that successfully returns a 200 response
for <url>/<version>/meta-data/instance-id will be selected.

Default: ['http://169.254.169.254', 'http://[fd00:ec2::254]', 'http://instance-data.:8773'].

max_wait

The maximum amount of clock time in seconds that should be spent searching metadata_urls. A value less than
zero will result in only one request being made, to the first in the list.

Default: 120

timeout

The timeout value provided to urlopen for each individual http request. This is used both when selecting a
metadata_url and when crawling the metadata service.

Default: 50

apply_full_imds_network_config

Boolean (default: True) to allow cloud-init to configure any secondary NICs and secondary IPs described by the
metadata service. All network interfaces are configured with DHCP (v4) to obtain a primary IPv4 address and route.
Interfaces which have a non-empty ipv6s list will also enable DHCPv6 to obtain a primary IPv6 address and route. The
DHCP response (v4 and v6) return an IP that matches the first element of local-ipv4s and ipv6s lists respectively.
All additional values (secondary addresses) in the static IP lists will be added to the interface.

An example configuration with the default values is provided below:

datasource:
Ec2:
metadata_urls: ["http://169.254.169.254:80", "http://instance-data:8773"]
max_wait: 120
timeout: 50
apply_full_imds_network_config: true

2.4. Reference 215

cloud-init, Release 24.1.3

Notes

• There are 2 types of EC2 instances, network-wise: Virtual Private Cloud (VPC) ones and Classic ones (also
known as non-VPC). One major difference between them is that Classic instances have their MAC address
changed on stop/restart operations, so cloud-init will recreate the network config file for EC2 Classic in-
stances every boot. On VPC instances this file is generated only on the first boot of the instance. The check for
the instance type is performed by is_classic_instance() method.

• For EC2 instances with multiple network interfaces (NICs) attached, DHCP4 will be enabled to obtain the pri-
mary private IPv4 address of those NICs. Wherever DHCP4 or DHCP6 is enabled for a NIC, a DHCP route-
metric will be added with the value of <device-number + 1> * 100 to ensure DHCP routes on the primary
NIC are preferred to any secondary NICs. For example: the primary NIC will have a DHCP route-metric of 100,
the next NIC will have 200.

• For EC2 instances with multiple NICs, policy-based routing will be configured on secondary NICs / secondary
IPs to ensure outgoing packets are routed via the correct interface. This network configuration is only applied on
distros using Netplan and at first boot only but it can be configured to be applied on every boot and when NICs
are hotplugged, see Events and updates.

Azure

This datasource finds metadata and user data from the Azure cloud platform.

The Azure cloud platform provides initial data to an instance via an attached CD formatted in UDF. This CD con-
tains a ovf-env.xml file that provides some information. Additional information is obtained via interaction with the
“endpoint”.

IMDS

Azure provides the instance metadata service (IMDS), which is a REST service on 169.254.169.254 providing
additional configuration information to the instance. Cloud-init uses the IMDS for:

• Network configuration for the instance which is applied per boot.

• A pre-provisioning gate which blocks instance configuration until Azure fabric is ready to provision.

• Retrieving SSH public keys. Cloud-init will first try to utilise SSH keys returned from IMDS, and if they are
not provided from IMDS then it will fall back to using the OVF file provided from the CD-ROM. There is a large
performance benefit to using IMDS for SSH key retrieval, but in order to support environments where IMDS is
not available then we must continue to all for keys from OVF[?]

Configuration

The following configuration can be set for the datasource in system configuration (in /etc/cloud/cloud.cfg or
/etc/cloud/cloud.cfg.d/).

The settings that may be configured are:

• apply_network_config

Boolean set to True to use network configuration described by Azure’s IMDS endpoint instead of fallback network
config of DHCP on eth0. Default is True.

• apply_network_config_for_secondary_ips

Boolean to configure secondary IP address(es) for each NIC per IMDS configuration. Default is True.

216 Chapter 2. Project and community

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/instance-metadata-service

cloud-init, Release 24.1.3

• data_dir

Path used to read metadata files and write crawled data.

• disk_aliases

A dictionary defining which device paths should be interpreted as ephemeral images. See cc_disk_setup module
for more info.

Configuration for the datasource can also be read from a dscfg entry in the LinuxProvisioningConfigurationSet.
Content in dscfg node is expected to be base64 encoded YAML content, and it will be merged into the 'datasource:
Azure' entry.

An example configuration with the default values is provided below:

datasource:
Azure:
apply_network_config: true
apply_network_config_for_secondary_ips: true
data_dir: /var/lib/waagent
disk_aliases:
ephemeral0: /dev/disk/cloud/azure_resource

User data

User data is provided to cloud-init inside the ovf-env.xml file. Cloud-init expects that user data will be provided
as a base64 encoded value inside the text child of an element named UserData or CustomData, which is a direct child
of the LinuxProvisioningConfigurationSet (a sibling to UserName).

If both UserData and CustomData are provided, the behaviour is undefined on which will be selected. In the example
below, user data provided is 'this is my userdata'.

Example:

<wa:ProvisioningSection>
<wa:Version>1.0</wa:Version>
<LinuxProvisioningConfigurationSet

xmlns="http://schemas.microsoft.com/windowsazure"
xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

<ConfigurationSetType>LinuxProvisioningConfiguration</ConfigurationSetType>
<HostName>myHost</HostName>
<UserName>myuser</UserName>
<UserPassword/>
<CustomData>dGhpcyBpcyBteSB1c2VyZGF0YQ===</CustomData>
<dscfg>eyJhZ2VudF9jb21tYW5kIjogWyJzdGFydCIsICJ3YWxpbnV4YWdlbnQiXX0=</dscfg>
<DisableSshPasswordAuthentication>true</DisableSshPasswordAuthentication>
<SSH>
<PublicKeys>
<PublicKey>
<Fingerprint>6BE7A7C3C8A8F4B123CCA5D0C2F1BE4CA7B63ED7</Fingerprint>
<Path>this-value-unused</Path>
</PublicKey>
</PublicKeys>
</SSH>
</LinuxProvisioningConfigurationSet>

</wa:ProvisioningSection>

2.4. Reference 217

cloud-init, Release 24.1.3

HostName

When the user launches an instance, they provide a hostname for that instance. The hostname is provided to the instance
in the ovf-env.xml file as HostName.

Whatever value the instance provides in its DHCP request will resolve in the domain returned in the ‘search’ request.

A generic image will already have a hostname configured. The Ubuntu cloud images have ubuntu as the hostname of
the system, and the initial DHCP request on eth0 is not guaranteed to occur after the datasource code has been run. So,
on first boot, that initial value will be sent in the DHCP request and that value will resolve.

In order to make the HostName provided in the ovf-env.xml resolve, a DHCP request must be made with the
new value. Cloud-init handles this by setting the hostname in the datasource’s get_data method via hostname
$HostName, and then bouncing the interface. This behaviour can be configured or disabled in the datasource config.
See ‘Configuration’ above.

CloudSigma

This datasource finds metadata and user data from the CloudSigma cloud platform. Data transfer occurs through a
virtual serial port of the CloudSigma’s VM, and the presence of a network adapter is NOT a requirement. See server
context in their public documentation for more information.

Setting a hostname

By default, the name of the server will be applied as a hostname on the first boot.

Providing user data

You can provide user data to the VM using the dedicated meta field in the server context cloudinit-user-data. By
default, cloud-config format is expected there, and the #cloud-config header can be omitted. However, since this is
a raw-text field you could provide any of the valid config formats.

You have the option to encode your user data using Base64. In order to do that you have to add the
cloudinit-user-data field to the base64_fields. The latter is a comma-separated field with all the meta fields
having Base64-encoded values.

If your user data does not need an internet connection you can create a meta field in the server context
cloudinit-dsmode and set “local” as the value. If this field does not exist, the default value is “net”.

CloudStack

Apache CloudStack exposes user data, metadata, user password, and account SSH key through the virtual router.
The datasource obtains the virtual router address via DHCP lease information given to the instance. For more
details on metadata and user data, refer to the CloudStack Administrator Guide.

The following URLs provide to access user data and metadata from the Virtual Machine. data-server. is a well-
known hostname provided by the CloudStack virtual router that points to the next UserData server (which is
usually also the virtual router).

http://data-server./latest/user-data
http://data-server./latest/meta-data
http://data-server./latest/meta-data/{metadata type}

218 Chapter 2. Project and community

http://cloudsigma.com/
http://cloudsigma.com/
http://cloudsigma-docs.readthedocs.org/en/latest/server_context.html
http://cloudsigma-docs.readthedocs.org/en/latest/server_context.html
http://cloudsigma-docs.readthedocs.org/en/latest/meta.html
http://cloudsigma-docs.readthedocs.org/en/latest/server_context.html
http://cloudsigma-docs.readthedocs.org/en/latest/meta.html
http://cloudsigma-docs.readthedocs.org/en/latest/server_context.html
http://cloudstack.apache.org/
https://docs.cloudstack.apache.org/en/latest/adminguide/virtual_machines.html#user-data-and-meta-data

cloud-init, Release 24.1.3

If data-server. cannot be resolved, cloud-initwill try to obtain the virtual router’s address from the system’s
DHCP leases. If that fails, it will use the system’s default gateway.

Configuration

The following configuration can be set for the datasource in system configuration (in /etc/cloud/cloud.cfg or
/etc/cloud/cloud.cfg.d/).

The settings that may be configured are:

• max_wait

The maximum amount of clock time in seconds that should be spent searching metadata_urls. A value less
than zero will result in only one request being made, to the first in the list.

Default: 120

• timeout

The timeout value provided to urlopen for each individual http request. This is used both when selecting a
metadata_url and when crawling the metadata service.

Default: 50

Example

An example configuration with the default values is provided below:

datasource:
CloudStack:
max_wait: 120
timeout: 50

Config drive

The configuration drive datasource supports the OpenStack configuration drive disk.

By default, cloud-init always considers this source to be a fully-fledged datasource. Instead, the typical behavior is
to assume it is really only present to provide networking information. Cloud-init will copy the network information,
apply it to the system, and then continue on. The “full” datasource could then be found in the EC2 metadata service.
If this is not the case then the files contained on the located drive must provide equivalents to what the EC2 metadata
service would provide (which is typical of the version 2 support listed below).

Note: See the config drive extension and metadata introduction in the public documentation for more information.

2.4. Reference 219

http://www.openstack.org/
https://docs.openstack.org/nova/latest/admin/config-drive.html
https://docs.openstack.org/nova/latest/user/metadata.html#config-drives

cloud-init, Release 24.1.3

Version 1 (deprecated)

Note: Version 1 is legacy and should be considered deprecated. Version 2 has been supported in OpenStack
since 2012.2 (Folsom).

The following criteria are required to use a config drive:

1. Must be formatted with vfat filesystem.

2. Must contain one of the following files:

/etc/network/interfaces
/root/.ssh/authorized_keys
/meta.js

/etc/network/interfaces

This file is laid down by nova in order to pass static networking information to the guest.
Cloud-init will copy it off of the config-drive and into /etc/network/interfaces (or convert
it to RH format) as soon as it can, and then attempt to bring up all network interfaces.

/root/.ssh/authorized_keys

This file is laid down by nova, and contains the ssk keys that were provided to nova on instance
creation (nova-boot –key)

/meta.js

meta.js is populated on the config-drive in response to the user passing “meta flags” (nova boot
–meta key=value . . .). It is expected to be json formatted.

Version 2

The following criteria are required to use a config drive:

1. Must be formatted with vfat or iso9660 filesystem, or have a filesystem label of config-2 or CONFIG-2.

2. The files that will typically be present in the config drive are:

openstack/
- 2012-08-10/ or latest/
- meta_data.json
- user_data (not mandatory)

- content/
- 0000 (referenced content files)
- 0001
-

ec2
- latest/
- meta-data.json (not mandatory)

220 Chapter 2. Project and community

https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/ISO_9660

cloud-init, Release 24.1.3

Keys and values

Cloud-init’s behaviour can be modified by keys found in the meta.js (version 1 only) file in the following ways.

ds-mode

dsmode:
values: local, net, pass
default: pass

This is what indicates if config drive is a final datasource or not. By default it is ‘pass’, meaning this datasource should
not be read. Set it to ‘local’ or ‘net’ to stop cloud-init from continuing to search for other datasources after network
config.

The difference between ‘local’ and ‘net’ is that local will not require networking to be up before user-data actions are
run.

instance-id

instance-id:
default: iid-dsconfigdrive

This is utilised as the metadata’s instance-id. It should generally be unique, as it is what is used to determine “is this a
new instance?”.

public-keys

public-keys:
default: None

If present, these keys will be used as the public keys for the instance. This value overrides the content in
authorized_keys.

Note: It is likely preferable to provide keys via user data.

user-data

user-data:
default: None

This provides cloud-init user data. See examples for details of what needs to be present here.

2.4. Reference 221

cloud-init, Release 24.1.3

DigitalOcean

Warning: Deprecated in version 23.2. Use DataSourceConfigDrive instead.

The DigitalOcean datasource consumes the content served from DigitalOcean’s metadata service. This metadata ser-
vice serves information about the running droplet via http over the link local address 169.254.169.254. The metadata
API endpoints are fully described in the DigitalOcean metadata documentation.

Configuration

DigitalOcean’s datasource can be configured as follows:

datasource:
DigitalOcean:
retries: 3
timeout: 2

• retries

Specifies the number of times to attempt connection to the metadata service.

• timeout

Specifies the timeout (in seconds) to wait for a response from the metadata service.

E24Cloud

E24Cloud platform provides an AWS EC2 metadata service clone. It identifies itself to guests using the DMI system-
manufacturer (/sys/class/dmi/id/sys_vendor).

Exoscale

This datasource supports reading from the metadata server used on the Exoscale platform. Use of the Exoscale data-
source is recommended to benefit from new features of the Exoscale platform.

The datasource relies on the availability of a compatible metadata server (http://169.254.169.254 is used by
default) and its companion password server, reachable at the same address (by default on port 8080).

Crawling of metadata

The metadata service and password server are crawled slightly differently:

• The “metadata service” is crawled every boot.

• The password server is also crawled every boot (the Exoscale datasource forces the password module to run with
“frequency always”).

In the password server case, the following rules apply in order to enable the “restore instance password” functionality:

• If a password is returned by the password server, it is then marked “saved” by the cloud-init datasource.
Subsequent boots will skip setting the password (the password server will return saved_password).

222 Chapter 2. Project and community

http://digitalocean.com/
https://developers.digitalocean.com/metadata/
https://www.e24cloud.com/en/
https://exoscale.com

cloud-init, Release 24.1.3

• When the instance password is reset (via the Exoscale UI), the password server will return the non-empty pass-
word at next boot, therefore causing cloud-init to reset the instance’s password.

Configuration

Users of this datasource are discouraged from changing the default settings unless instructed to by Exoscale support.

The following settings are available and can be set for the datasource base configuration (in /etc/cloud/cloud.
cfg.d/).

The settings available are:

• metadata_url: The URL for the metadata service.

Defaults to http://169.254.169.254.

• api_version: The API version path on which to query the instance metadata.

Defaults to 1.0.

• password_server_port: The port (on the metadata server) on which the password server listens.

Defaults to 8080.

• timeout: The timeout value provided to urlopen for each individual http request.

Defaults to 10.

• retries: The number of retries that should be done for a http request.

Defaults to 6.

Example

An example configuration with the default values is provided below:

datasource:
Exoscale:
metadata_url: "http://169.254.169.254"
api_version: "1.0"
password_server_port: 8080
timeout: 10
retries: 6

Fallback/no datasource

This is the fallback datasource when no other datasource can be selected. It is the equivalent of an empty datasource,
in that it provides an empty string as user data, and an empty dictionary as metadata.

It is useful for testing, as well as for occasions when you do not need an actual datasource to meet your instance
requirements (i.e. you just want to run modules that are not concerned with any external data).

It is typically put at the end of the datasource search list so that if all other datasources are not matched, then this one
will be so that the user is not left with an inaccessible instance.

Note: The instance id that this datasource provides is iid-datasource-none.

2.4. Reference 223

cloud-init, Release 24.1.3

Google Compute Engine

The GCE datasource gets its data from the internal compute metadata server. Metadata can be queried at the URL
http://metadata.google.internal/computeMetadata/v1/ from within an instance. For more information see
the GCE metadata docs.

Currently, the default project and instance level metadata keys project/attributes/sshKeys and instance/
attributes/ssh-keys are merged to provide public-keys.

user-data and user-data-encoding can be provided to cloud-init by setting those custom metadata keys for an
instance.

Configuration

The following configuration can be set for the datasource in system configuration (in /etc/cloud/cloud.cfg or
/etc/cloud/cloud.cfg.d/).

The settings that may be configured are:

• retries

The number of retries that should be attempted for a http request. This value is used only after metadata_url
is selected.

Default: 5

• sec_between_retries

The amount of wait time between retries when crawling the metadata service.

Default: 1

Example

An example configuration with the default values is provided below:

datasource:
GCE:
retries: 5
sec_between_retries: 1

LXD

The LXD datasource allows the user to provide custom user data, vendor data, metadata and network-config to the
instance without running a network service (or even without having a network at all). This datasource performs HTTP
GETs against the LXD socket device which is provided to each running LXD container and VM as /dev/lxd/sock
and represents all instance-metadata as versioned HTTP routes such as:

• 1.0/meta-data

• 1.0/config/user.meta-data

• 1.0/config/user.vendor-data

• 1.0/config/user.user-data

• 1.0/config/user.<any-custom-key>

224 Chapter 2. Project and community

https://cloud.google.com/compute/docs/storing-retrieving-metadata
https://documentation.ubuntu.com/lxd/en/latest/dev-lxd/

cloud-init, Release 24.1.3

The LXD socket device /dev/lxd/sock is only present on containers and VMs when the instance configuration
has security.devlxd=true (default). Disabling the security.devlxd configuration setting at initial launch will
ensure that cloud-init uses the NoCloud datasource. Disabling security.devlxd over the life of the container
will result in warnings from cloud-init, and cloud-init will keep the originally-detected LXD datasource.

The LXD datasource is detected as viable by ds-identify during the detect stage when either /dev/lxd/sock exists
or /sys/class/dmi/id/board_name matches “LXD”.

The LXD datasource provides cloud-init with the ability to react to metadata, vendor data, user data and network-
config changes, and to render the updated configuration across a system reboot.

To modify which metadata, vendor data or user data are provided to the launched container, use either LXD profiles or
lxc launch ... -c <key>="<value>" at initial container launch, by setting one of the following keys:

• user.meta-data: YAML metadata which will be appended to base metadata.

• user.vendor-data: YAML which overrides any metadata values.

• user.network-config: YAML representing either Networking config Version 1 or Networking config Version
2 format.

• user.user-data: YAML which takes precedence and overrides both metadata and vendor data values.

• user.any-key: Custom user configuration key and value pairs, which can be passed to cloud-init. Those
keys/values will be present in instance-data which can be used by both #template: jinja #cloud-config templates
and the cloud-init query command.

Note: LXD version 4.22 introduced a new scope of config keys prefaced by cloud-init., which are preferred above
the related user.* keys:

• cloud-init.meta-data

• cloud-init.vendor-data

• cloud-init.network-config

• cloud-init.user-data

Configuration

By default, network configuration from this datasource will be:

version: 1
config:

- type: physical
name: eth0
subnets:

- type: dhcp
control: auto

This datasource is intended to replace NoCloud datasource for LXD instances with a more direct support for LXD APIs
instead of static NoCloud seed files.

2.4. Reference 225

cloud-init, Release 24.1.3

Hotplug

Network hotplug functionality is supported for the LXD datasource as described in the Events and updates docu-
mentation. As hotplug functionality relies on the cloud-provided network metadata, the LXD datasource will only
meaningfully react to a hotplug event if it has the configuration necessary to respond to the change. Practically, this
means that even with hotplug enabled, the default behavior for adding a new virtual NIC will result in no change.

To update the configuration to be used by hotplug, first pass the network configuration via the cloud-init.
network-config (or user.network-config on older versions).

Example

Given an LXD instance named my-lxd with hotplug enabled and an LXD bridge named my-bridge, the following
will allow for additional DHCP configuration of eth1:

$ cat /tmp/cloud-network-config.yaml
version: 2
ethernets:

eth0:
dhcp4: true

eth1:
dhcp4: true

$ lxc config set my-lxd cloud-init.network-config="$(cat /tmp/cloud-network-config.yaml)"
$ lxc config device add my-lxd eth1 nic name=eth1 nictype=bridged parent=my-bridge
Device eth1 added to my-lxd

MAAS

For now see: https://maas.io/docs

NoCloud

The data source NoCloud is a flexible datasource that can be used in multiple different ways. With NoCloud, the user
can provide user data and metadata to the instance without running a network service (or even without having a network
at all). Alternatively, one may use a custom webserver to provide configurations.

Configuration Methods:

Warning: User data placed under /etc/cloud/ will not be recognized as a source of configuration data by the
NoCloud datasource. While it may be acted upon by cloud-init, using DataSourceNone should be preferred.

Method 1: Labeled filesystem

A labeled vfat or iso9660 filesystem containing user data and metadata files may be used. The filesystem volume must
be labelled CIDATA.

226 Chapter 2. Project and community

https://maas.io/docs
https://en.wikipedia.org/wiki/File_Allocation_Table

cloud-init, Release 24.1.3

Method 2: Custom webserver

Configuration files can be provided to cloud-init over HTTP(s). To tell cloud-init the URI to use, arguments must be
passed to the instance via the kernel commandline or SMBIOS serial number. This argument might look like:

ds=nocloud;s=https://10.42.42.42/cloud-init/configs/

Note: If using kernel command line arguments with GRUB, note that an unescaped semicolon is in-
tepreted as the end of a statement. Consider using single-quotes to avoid this pitfall. See: GRUB quoting
ds=nocloud;s=http://10.42.42.42/cloud-init/configs/

Method 3: FTP Server

Configuration files can be provided to cloud-init over unsecured FTP or alternatively with FTP over TLS. To tell cloud-
init the URL to use, arguments must be passed to the instance via the kernel commandline or SMBIOS serial number.
This argument might look like:

ds=nocloud;s=ftps://10.42.42.42/cloud-init/configs/

Method 4: Local filesystem, kernel commandline or SMBIOS

Configuration files can be provided on the local filesystem at specific filesystem paths using kernel commandline argu-
ments or SMBIOS serial number to tell cloud-init where on the filesystem to look.

Note: Unless arbitrary filesystem paths are required, one might prefer to use DataSourceNone, since it does not require
modifying the kernel commandline or SMBIOS.

This argument might look like:

ds=nocloud;s=file://path/to/directory/;h=node-42

Permitted keys

The permitted keys are:

• h or local-hostname

• i or instance-id

• s or seedfrom

A valid seedfrom value consists of a URI which must contain a trailing /.

2.4. Reference 227

https://www.gnu.org/software/grub/manual/grub/grub.html#Quoting

cloud-init, Release 24.1.3

HTTP and HTTPS

The URI elements supported by NoCloud’s HTTP and HTTPS implementations include:

<scheme>://<host>/<path>/

Where scheme can be http or https and host can be an IP address or DNS name.

FTP and FTP over TLS

The URI elements supported by NoCloud’s FTP and FTPS implementation include:

<scheme>://<userinfo>@<host>:<port>/<path>/

Where scheme can be ftp or ftps, userinfo will be username:password (defaults is anonymous and an empty
password), host can be an IP address or DNS name, and port is which network port to use (default is 21).

Path Resource

The path pointed to by the URI will contain the following files:

user-data (required) meta-data (required) vendor-data (optional)

The user-data file uses user data format. The meta-data file is a YAML-formatted file. The vendor data file adheres
to user data formats at the same base URL.

DMI-specific kernel commandline

Cloud-init performs variable expansion of the seedfrom URL for any DMI kernel variables present in /sys/class/
dmi/id (kenv on FreeBSD). Your seedfrom URL can contain variable names of the format __dmi.varname__ to
indicate to the cloud-initNoCloud datasource that dmi.varname should be expanded to the value of the DMI system
attribute wanted.

Table 1: Available DMI variables for expansion in seedfrom URL

dmi.baseboard-asset-tag dmi.baseboard-manufacturer dmi.baseboard-version
dmi.bios-release-date dmi.bios-vendor dmi.bios-version
dmi.chassis-asset-tag dmi.chassis-manufacturer dmi.

chassis-serial-number
dmi.chassis-version dmi.system-manufacturer dmi.system-product-name
dmi.system-serial-number dmi.system-uuid dmi.system-version

For example, you can pass this option to QEMU:

-smbios type=1,serial=ds=nocloud;s=http://10.10.0.1:8000/__dmi.chassis-serial-number__/

This will cause NoCloud to fetch the full metadata from a URL based on YOUR_SERIAL_NUMBER as seen in /
sys/class/dmi/id/chassis_serial_number (kenv on FreeBSD) from http://10.10.0.1:8000/YOUR_SERIAL_
NUMBER/meta-data after the network initialisation is complete.

228 Chapter 2. Project and community

http://10.10.0.1:8000/YOUR_SERIAL_NUMBER/meta-data
http://10.10.0.1:8000/YOUR_SERIAL_NUMBER/meta-data

cloud-init, Release 24.1.3

Example: Creating a disk

Given a disk Ubuntu cloud image in disk.img, you can create a sufficient disk by following the following example.

1. Create the user-data and meta-data files that will be used to modify the image on first boot.

$ echo -e "instance-id: iid-local01\nlocal-hostname: cloudimg" > meta-data
$ echo -e "#cloud-config\npassword: passw0rd\nchpasswd: { expire: False }\nssh_pwauth:␣
→˓True\ncreate_hostname_file: true\n" > user-data

2. At this stage you have three options:

a. Create a disk to attach with some user data and metadata:

$ genisoimage -output seed.iso -volid cidata -joliet -rock user-data meta-data

b. Alternatively, create a vfat filesystem with the same files:

$ truncate --size 2M seed.iso
$ mkfs.vfat -n cidata seed.iso

• 2b) Option 1: mount and copy files:

$ sudo mount -t vfat seed.iso /mnt
$ sudo cp user-data meta-data /mnt
$ sudo umount /mnt

• 2b) Option 2: the mtools package provides mcopy, which can access vfat filesystems without mount-
ing them:

$ mcopy -oi seed.iso user-data meta-data ::

3. Create a new qcow image to boot, backed by your original image:

$ qemu-img create -f qcow2 -b disk.img -F qcow2 boot-disk.img

4. Boot the image and log in as “Ubuntu” with password “passw0rd”:

$ kvm -m 256 \
-net nic -net user,hostfwd=tcp::2222-:22 \
-drive file=boot-disk.img,if=virtio \
-drive driver=raw,file=seed.iso,if=virtio

Note: Note that “passw0rd” was set as password through the user data above. There is no password set on these
images.

Note: The instance-id provided (iid-local01 above) is what is used to determine if this is “first boot”. So, if
you are making updates to user data you will also have to change the instance-id, or start the disk fresh.

Also, you can inject an /etc/network/interfaces file by providing the content for that file in the
network-interfaces field of meta-data.

2.4. Reference 229

cloud-init, Release 24.1.3

Example meta-data

instance-id: iid-abcdefg
network-interfaces: |
iface eth0 inet static
address 192.168.1.10
network 192.168.1.0
netmask 255.255.255.0
broadcast 192.168.1.255
gateway 192.168.1.254

hostname: myhost

Network configuration can also be provided to cloud-init in either Networking config Version 1 or Networking config
Version 2 by providing that YAML formatted data in a file named network-config. If found, this file will override a
network-interfaces file.

See an example below. Note specifically that this file does not have a top level network key as it is already assumed
to be network configuration based on the filename.

Example config

version: 1
config:

- type: physical
name: interface0
mac_address: "52:54:00:12:34:00"
subnets:

- type: static
address: 192.168.1.10
netmask: 255.255.255.0
gateway: 192.168.1.254

version: 2
ethernets:
interface0:
match:
macaddress: "52:54:00:12:34:00"

set-name: interface0
addresses:

- 192.168.1.10/255.255.255.0
gateway4: 192.168.1.254

230 Chapter 2. Project and community

cloud-init, Release 24.1.3

None

The data source None may be used when no other viable datasource is present on disk. This has two primary use cases:

1. Providing user data to cloud-init from on-disk configuration when no other datasource is present.

2. As a fallback for when a datasource is otherwise intermittently unavailable.

When the datasource is None, cloud-init is unable to obtain or render networking configuration. Additionally, when
cloud-init completes, a warning is logged that DataSourceNone is being used.

Configuration

User data and meta data may be passed to cloud-init via system configuration in /etc/cloud/cloud.cfg or /etc/
cloud/cloud.cfg.d/*.cfg.

userdata_raw

A string containing the user data (including header) to be used by cloud-init.

metadata

The metadata to be used by cloud-init.

Example configuration

datasource:
None:
metadata:
local-hostname: "myhost.internal"

userdata_raw: |
#cloud-config
runcmd:
- echo 'mydata' > /var/tmp/mydata.txt

NWCS

The NWCS datasource retrieves basic configuration values from the locally accessible metadata service. All data is
served over HTTP from the address 169.254.169.254.

2.4. Reference 231

cloud-init, Release 24.1.3

Configuration

The NWCS datasource can be configured as follows:

datasource:
NWCS:
url: 'http://169.254.169.254'
retries: 3
timeout: 2
wait: 2

• url: The URL used to acquire the metadata configuration.

• retries: Determines the number of times to attempt to connect to the metadata service.

• timeout: Determines the timeout (in seconds) to wait for a response from the metadata service

• wait: Determines the timeout in seconds to wait before retrying after accessible failure.

OpenNebula

The OpenNebula (ON) datasource supports the contextualisation disk.

OpenNebula’s virtual machines are contextualised (parametrised) by CD-ROM image, which contains a shell script
context.sh, with custom variables defined on virtual machine start. There are no fixed contextualisation variables,
but the datasource accepts many used and recommended across the documentation.

Datasource configuration

Datasource accepts the following configuration options:

dsmode:
values: local, net, disabled
default: net

These specify whether the datasource will be processed in local (pre-networking) stage, net (post-networking) stage
or be disabled.

parseuser:
default: nobody

Unprivileged system user used for contextualisation script processing.

Contextualisation disk

The following criteria are required:

1. Must be formatted with iso9660 filesystem or have a filesystem label of CONTEXT or CDROM.

2. Must contain the file context.sh with contextualisation variables. The file is generated by OpenNebula and
has a KEY='VALUE' format that can be easily read by bash.

232 Chapter 2. Project and community

http://opennebula.org/
https://en.wikipedia.org/wiki/ISO_9660

cloud-init, Release 24.1.3

Contextualisation variables

There are no fixed or standard contextualisation variables in OpenNebula. The following variables were found in
various places and in revisions of the OpenNebula documentation. Where multiple similar variables are specified, only
the one found first is taken.

• DSMODE: Datasource mode configuration override. Values are: local, net, disabled.

DNS
ETH<x>_IP
ETH<x>_NETWORK
ETH<x>_MASK
ETH<x>_GATEWAY
ETH<x>_GATEWAY6
ETH<x>_DOMAIN
ETH<x>_DNS
ETH<x>_SEARCH_DOMAIN
ETH<x>_MTU
ETH<x>_IP6
ETH<x>_IP6_ULA
ETH<x>_IP6_PREFIX_LENGTH
ETH<x>_IP6_GATEWAY

Static network configuration.

SET_HOSTNAME
HOSTNAME

Instance hostname.

PUBLIC_IP
IP_PUBLIC
ETH0_IP

If no hostname has been specified, cloud-init will try to create a hostname from the instance’s IP address in local
dsmode. In net dsmode, cloud-init tries to resolve one of its IP addresses to get the hostname.

SSH_KEY
SSH_PUBLIC_KEY

One or multiple SSH keys (separated by newlines) can be specified.

USER_DATA
USERDATA

Cloud-init user data.

2.4. Reference 233

http://opennebula.org/documentation:documentation:cong#network_configuration

cloud-init, Release 24.1.3

Example configuration

This example cloud-init configuration (cloud.cfg) enables OpenNebula datasource only in net mode.

disable_ec2_metadata: True
datasource_list: ['OpenNebula']
datasource:
OpenNebula:
dsmode: net
parseuser: nobody

Example VM’s context section

CONTEXT=[
SSH_KEY="$USER[SSH_KEY]

$USER[SSH_KEY1]
$USER[SSH_KEY2]",
PUBLIC_IP="$NIC[IP]",
USER_DATA="#cloud-config

see https://help.ubuntu.com/community/CloudInit

packages: []

mounts:
- [vdc,none,swap,sw,0,0]
runcmd:
- echo 'Instance has been configured by cloud-init.' | wall
"]

OpenStack

This datasource supports reading data from the OpenStack Metadata Service.

Discovery

To determine whether a platform looks like it may be OpenStack, cloud-init checks the following environment
attributes as a potential OpenStack platform:

• May be OpenStack if :

– non-x86 cpu architecture: because DMI data is buggy on some arches.

• Is OpenStack if x86 architecture and ANY of the following:

– /proc/1/environ: Nova-lxd contains product_name=OpenStack Nova.

– DMI product_name: Either Openstack Nova or OpenStack Compute.

– DMI chassis_asset_tag is HUAWEICLOUD, OpenTelekomCloud, SAP CCloud VM, OpenStack Nova
(since 19.2) or OpenStack Compute (since 19.2).

234 Chapter 2. Project and community

https://docs.openstack.org/nova/latest/admin/metadata-service.html

cloud-init, Release 24.1.3

Configuration

The following configuration can be set for the datasource in system configuration (in /etc/cloud/cloud.cfg or
/etc/cloud/cloud.cfg.d/).

The settings that may be configured are as follows:

metadata_urls

This list of URLs will be searched for an OpenStack metadata service. The first entry that successfully returns a 200
response for <url>/openstack will be selected.

Default: [’http://169.254.169.254’])

max_wait

The maximum amount of clock time (in seconds) that should be spent searching metadata_urls. A value less than
zero will result in only one request being made, to the first in the list.

Default: -1

timeout

The timeout value provided to urlopen for each individual http request. This is used both when selecting a
metadata_url and when crawling the metadata service.

Default: 10

retries

The number of retries that should be attempted for an http request. This value is used only after metadata_url is
selected.

Default: 5

apply_network_config

A boolean specifying whether to configure the network for the instance based on network_data.json provided by
the metadata service. When False, only configure DHCP on the primary NIC for this instance.

Default: True

2.4. Reference 235

http://169.254.169.254

cloud-init, Release 24.1.3

Example configuration

An example configuration with the default values is provided below:

datasource:
OpenStack:
metadata_urls: ["http://169.254.169.254"]
max_wait: -1
timeout: 10
retries: 5
apply_network_config: True

Vendor Data

The OpenStack metadata server can be configured to serve up vendor data, which is available to all instances for
consumption. OpenStack vendor data is generally a JSON object.

Cloud-init will look for configuration in the cloud-init attribute of the vendor data JSON object. Cloud-init
processes this configuration using the same handlers as user data, so any formats that work for user data should work
for vendor data.

For example, configuring the following as vendor data in OpenStack would upgrade packages and install htop on all
instances:

{"cloud-init": "#cloud-config\npackage_upgrade: True\npackages:\n - htop"}

For more general information about how cloud-init handles vendor data, including how it can be disabled by users
on instances, see our explanation topic.

OpenStack can also be configured to provide “dynamic vendordata” which is provided by the DynamicJSON provider
and appears under a different metadata path, /vendor_data2.json.

Cloud-init will look for a cloud-init at the vendor_data2 path; if found, settings are applied after (and, hence,
overriding) the settings from static vendor data. Both sets of vendor data can be overridden by user data.

OpenStack Ironic Bare Metal

During boot, cloud-init typically has to identify which platform it is running on. Since OpenStack Ironic Bare Metal
doesn’t provide a method for cloud-init to discover that it is running on Ironic, extra user configuration is required.

Cloud-init provides two methods to do this:

Method 1: Configuration file

Explicitly set datasource_list to only openstack, such as:

datasource_list: ["openstack"]

236 Chapter 2. Project and community

cloud-init, Release 24.1.3

Method 2: Kernel command line

Set the kernel commandline to configure datasource override.

Example using Ubuntu + GRUB2:

$ echo 'ds=openstack' >> /etc/default/grub
$ grub-mkconfig -o /boot/efi/EFI/ubuntu/grub.cfg

Oracle

This datasource reads metadata, vendor data and user data from Oracle Compute Infrastructure (OCI).

Oracle platform

OCI provides bare metal and virtual machines. In both cases, the platform identifies itself via DMI data in the chassis
asset tag with the string 'OracleCloud.com'.

Oracle’s platform provides a metadata service that mimics the 2013-10-17 version of OpenStack metadata service.
Initially, support for Oracle was done via the OpenStack datasource.

Cloud-init has a specific datasource for Oracle in order to:

a. Allow and support the future growth of the OCI platform.

b. Address small differences between OpenStack and Oracle metadata
implementation.

Configuration

The following configuration can be set for the datasource in system configuration (in /etc/cloud/cloud.cfg or
/etc/cloud/cloud.cfg.d/).

configure_secondary_nics

A boolean, defaulting to False. If set to True on an OCI Virtual Machine, cloud-init will fetch networking metadata
from Oracle’s IMDS and use it to configure the non-primary network interface controllers in the system. If set to True
on an OCI Bare Metal Machine, it will have no effect (though this may change in the future).

max_wait

An integer, defaulting to 30. The maximum time in seconds to wait for the metadata service to become available. If
the metadata service is not available within this time, the datasource will fail.

2.4. Reference 237

https://cloud.oracle.com/

cloud-init, Release 24.1.3

timeout

An integer, defaulting to 5. The time in seconds to wait for a response from the metadata service before retrying.

Example configuration

An example configuration with the default values is provided below:

datasource:
Oracle:
configure_secondary_nics: false
max_wait: 30
timeout: 5

OVF

The OVF datasource provides a datasource for reading data from an Open Virtualization Format ISO transport.

Graceful rpctool fallback

The datasource initially attempts to use the program vmware-rpctool if it is available. However, if the program
returns a non-zero exit code, then the datasource falls back to using the program vmtoolsd with the --cmd argument.

On some older versions of ESXi and open-vm-tools, the vmware-rpctool program is much more performant than
vmtoolsd. While this gap was closed, it is not reasonable to expect the guest where cloud-init is running to know
whether the underlying hypervisor has the patch.

Additionally, vSphere VMs may have the following present in their VMX file:

guest_rpc.rpci.auth.cmd.info-set = "TRUE"
guest_rpc.rpci.auth.cmd.info-get = "TRUE"

The above configuration causes the vmware-rpctool command to return a non-zero exit code with the error message
Permission denied. If this should occur, the datasource falls back to using vmtoolsd.

Additional information

For further information see a full working example in cloud-init’s source code tree in doc/sources/ovf.

Rbx Cloud

The Rbx datasource consumes the metadata drive available on the HyperOne and Rootbox platforms.

This datasource supports network configurations, hostname, user accounts and user metadata.

238 Chapter 2. Project and community

https://en.wikipedia.org/wiki/Open_Virtualization_Format
http://www.hyperone.com/
https://rootbox.com/

cloud-init, Release 24.1.3

Metadata drive

Drive metadata is a FAT-formatted partition with the CLOUDMD or cloudmd label on the system disk. Its contents are
refreshed each time the virtual machine is restarted, if the partition exists. For more information see HyperOne Virtual
Machine docs.

Scaleway

Scaleway datasource uses data provided by the Scaleway metadata service to do initial configuration of the network
services.

The metadata service is reachable at the following addresses :

• IPv4: 169.254.42.42

• IPv6: fd00:42::42

Configuration

Scaleway datasource may be configured in system configuration (in /etc/cloud cloud.cfg) or by adding a file with the
.cfg suffix containing the following information in the /etc/cloud.cfg.d directory:

datasource:
Scaleway:
retries: 3
timeout: 10
max_wait: 2
metadata_urls:
- alternate_url

• retries

Controls the maximum number of attempts to reach the metadata service.

• timeout

Controls the number of seconds to wait for a response from the metadata service for one protocol.

• max_wait

Controls the number of seconds to wait for a response from the metadata service for all protocols.

• metadata_urls

List of additional URLs to be used in an attempt to reach the metadata service in addition to the existing ones.

User Data

cloud-init fetches user data using the metadata service using the /user_data endpoint. Scaleway’s documentation pro-
vides a detailed description on how to use userdata. One can also interact with it using the userdata api.

2.4. Reference 239

https://en.wikipedia.org/wiki/File_Allocation_Table
http://www.hyperone.com/
http://www.hyperone.com/
https://www.scaleway.com
https://www.scaleway.com/en/docs/compute/instances/api-cli/using-cloud-init/
https://www.scaleway.com/en/developers/api/instance/#path-user-data-list-user-data

cloud-init, Release 24.1.3

SmartOS Datasource

This datasource finds metadata and user data from the SmartOS virtualisation platform (i.e., Joyent).

Please see http://smartos.org/ for information about SmartOS.

SmartOS platform

The SmartOS virtualisation platform uses metadata from the instance via the second serial console. On Linux, this is
/dev/ttyS1. The data is provided via a simple protocol:

• Something queries for the data,

• the console responds with the status, and

• if “SUCCESS” returns until a single “.n”.

New versions of the SmartOS tooling will include support for Base64-encoded data.

Metadata channels

Cloud-init supports three modes of delivering user data and metadata via the flexible channels of SmartOS.

1. User data is written to /var/db/user-data:

• As per the spec, user data is for consumption by the end user, not provisioning tools.

• Cloud-init ignores this channel, other than writing it to disk.

• Removal of the meta-data key means that /var/db/user-data gets removed.

• A backup of previous metadata is maintained as /var/db/user-data.<timestamp>. <timestamp> is
the epoch time when cloud-init ran.

2. user-script is written to /var/lib/cloud/scripts/per-boot/99_user_data:

• This is executed each boot.

• A link is created to /var/db/user-script.

• Previous versions of user-script is written to /var/lib/cloud/scripts/per-boot.backup/
99_user_script.<timestamp>.

• <timestamp> is the epoch time when cloud-init ran.

• When the user-script metadata key goes missing, user-script is removed from the file system, al-
though a backup is maintained.

• If the script does not start with a shebang (i.e., it starts with #!<executable>), or it is not an executable,
cloud-init will add a shebang of “#!/bin/bash”.

3. Cloud-init user data is treated like on other Clouds.

• This channel is used for delivering _all_ cloud-init instructions.

• Scripts delivered over this channel must be well formed (i.e., they must have a shebang).

Cloud-init supports reading the traditional metadata fields supported by the SmartOS tools. These are:

• root_authorized_keys

• hostname

• enable_motd_sys_info

240 Chapter 2. Project and community

http://smartos.org/

cloud-init, Release 24.1.3

• iptables_disable

Note: At this time, iptables_disable and enable_motd_sys_info are read but are not actioned.

Disabling user-script

Cloud-init uses the per-boot script functionality to handle the execution of the user-script. If you want to prevent
this, use a cloud-config of:

#cloud-config
cloud_final_modules:
- scripts_per_once
- scripts_per_instance
- scripts_user
- ssh_authkey_fingerprints
- keys_to_console
- phone_home
- final_message
- power_state_change

Alternatively you can use the JSON patch method:

#cloud-config-jsonp
[

{ "op": "replace",
"path": "/cloud_final_modules",
"value": ["scripts_per_once",

"scripts_per_instance",
"scripts_user",
"ssh_authkey_fingerprints",
"keys_to_console",
"phone_home",
"final_message",
"power_state_change"]

}
]

The default cloud-config includes “script-per-boot”. Cloud-init will still ingest and write the user data, but will not
execute it when you disable the per-boot script handling.

The cloud-config needs to be delivered over the cloud-init:user-data channel in order for cloud-init to ingest
it.

Note: Unless you have an explicit use-case, it is recommended that you do not disable the per-boot script execution,
especially if you are using any of the life-cycle management features of SmartOS.

2.4. Reference 241

cloud-init, Release 24.1.3

Base64

The following are exempt from Base64 encoding, owing to the fact that they are provided by SmartOS:

• root_authorized_keys

• enable_motd_sys_info

• iptables_disable

• user-data

• user-script

This list can be changed through the datasource base configuration variable no_base64_decode.

This means that user-script, user-data and other values can be Base64 encoded. Since cloud-init can only
guess whether or not something is truly Base64 encoded, the following metadata keys are hints as to whether or not to
Base64 decode something:

• base64_all: Except for excluded keys, attempt to Base64 decode the values. If the value fails to decode prop-
erly, it will be returned in its text.

• base64_keys: A comma-delimited list of which keys are Base64 encoded.

• b64-<key>: For any key, if an entry exists in the metadata for 'b64-<key>', then 'b64-<key>' is expected to
be a plain-text boolean indicating whether or not its value is encoded.

• no_base64_decode: This is a configuration setting (i.e., /etc/cloud/cloud.cfg.d) that sets which values
should not be Base64 decoded.

disk_aliases and ephemeral disk

By default, SmartOS only supports a single ephemeral disk. That disk is completely empty (un-partitioned, with no
filesystem).

The SmartOS datasource has built-in cloud-config which instructs the disk_setup module to partition and format the
ephemeral disk.

You can control the disk_setup in 2 ways:

1. Through the datasource config, you can change the ‘alias’ of ephemeral0 to reference another device. The
default is:

'disk_aliases': {'ephemeral0': '/dev/vdb'}

This means that anywhere disk_setup sees a device named ‘ephemeral0’, then /dev/vdb will be substituted.

2. You can provide disk_setup or fs_setup data in user-data to overwrite the datasource’s built-in values.

See doc/examples/cloud-config-disk-setup.txt for information on disk_setup.

242 Chapter 2. Project and community

cloud-init, Release 24.1.3

UpCloud

The UpCloud datasource consumes information from UpCloud’s metadata service. This metadata service serves infor-
mation about the running server via HTTP over the address 169.254.169.254 available in every DHCP-configured
interface. The metadata API endpoints are fully described in UpCloud API documentation.

Providing user data

When creating a server, user data is provided by specifying it as user_data in the API or via the server creation tool
in the control panel. User data is immutable during the server’s lifetime, and can be removed by deleting the server.

VMware

This datasource is for use with systems running on a VMware platform such as vSphere and currently supports the
following data transports:

• Guest OS Customization

• GuestInfo keys

The configuration method is dependent upon the transport.

Guest OS customization

The following configuration can be set for this datasource in cloud-init configuration (in /etc/cloud/cloud.cfg
or /etc/cloud/cloud.cfg.d/).

System configuration

• disable_vmware_customization: true (disable) or false (enable) the VMware traditional Linux guest cus-
tomization. Traditional Linux guest customization is customizing a Linux virtual machine with a traditional
Linux customization specification. Setting this configuration to false is required to make sure this datasource is
found in ds-identify when using Guest OS customization transport. VMware Tools only checks this config-
uration in /etc/cloud/cloud.cfg.

Default: true

Datasource configuration

• allow_raw_data: true (enable) or false (disable) the VMware customization using cloud-init metadata and
user data directly. Since vSphere 7.0 Update 3 version, users can create a Linux customization specification with
minimal cloud-init metadata and user data, and apply this specification to a virtual machine. This datasource
will parse the metadata and user data and configure the virtual machine with them. See Guest customization
using cloud-init for more information.

Default: true

• vmware_cust_file_max_wait: The maximum amount of clock time (in seconds) that should be spent waiting
for VMware customization files.

Default: 15

2.4. Reference 243

https://upcloud.com/
https://upcloud.com/community/tutorials/upcloud-metadata-service/
https://developers.upcloud.com/1.3/8-servers/#metadata-service
https://docs.vmware.com/en/VMware-vSphere/8.0/vsphere-vm-administration/GUID-58E346FF-83AE-42B8-BE58-253641D257BC.html
https://github.com/vmware/govmomi/blob/master/govc/USAGE.md
https://docs.vmware.com/en/VMware-vSphere/8.0/vsphere-vm-administration/GUID-EB5F090E-723C-4470-B640-50B35D1EC016.html#GUID-9A5093A5-C54F-4502-941B-3F9C0F573A39__GUID-40C60643-A2EB-4B05-8927-B51AF7A6CC5E
https://docs.vmware.com/en/VMware-vSphere/8.0/vsphere-vm-administration/GUID-EB5F090E-723C-4470-B640-50B35D1EC016.html#GUID-9A5093A5-C54F-4502-941B-3F9C0F573A39__GUID-40C60643-A2EB-4B05-8927-B51AF7A6CC5E
https://developer.vmware.com/docs/17686/vsphere-web-services-sdk-programming-guide--8-0-/GUID-75E27FA9-2E40-4CBF-BF3D-22DCFC8F11F7.html
https://developer.vmware.com/docs/17686/vsphere-web-services-sdk-programming-guide--8-0-/GUID-75E27FA9-2E40-4CBF-BF3D-22DCFC8F11F7.html

cloud-init, Release 24.1.3

Configuration examples

1. Enable VMware customization and set the maximum waiting time for the VMware customization file to 10
seconds:

Set disable_vmware_customization in the /etc/cloud/cloud.cfg

disable_vmware_customization: false

Create a /etc/cloud/cloud.cfg.d/99-vmware-guest-customization.cfg with the following content

datasource:
VMware:
vmware_cust_file_max_wait: 10

2. Enable VMware customization but only try to apply a traditional Linux Guest Customization configuration, and
set the maximum waiting time for the VMware customization file to 10 seconds:

Set disable_vmware_customization in the /etc/cloud/cloud.cfg

disable_vmware_customization: false

Create a /etc/cloud/cloud.cfg.d/99-vmware-guest-customization.cfg with the following content

datasource:
VMware:
allow_raw_data: false
vmware_cust_file_max_wait: 10

VMware Tools configuration

VMware Tools is required for this datasource’s configuration settings, as well as vCloud and vSphere admin configu-
ration. Users can change the VMware Tools configuration options with the following command:

vmware-toolbox-cmd config set <section> <key> <value>

The following VMware Tools configuration option affects this datasource’s behaviour when applying customization
configuration with custom scripts:

• [deploypkg] enable-custom-scripts: If this option is absent in VMware Tools configuration, the custom
script is disabled by default for security reasons. Some VMware products could change this default behaviour
(for example: enabled by default) via customization of the specification settings.

VMware admins can refer to customization configuration and set the customization specification settings.

For more information, see VMware vSphere Product Documentation and specific VMware Tools configuration options.

244 Chapter 2. Project and community

https://docs.vmware.com/en/VMware-Tools/index.html
https://github.com/canonical/cloud-init/blob/main/cloudinit/sources/helpers/vmware/imc/config.py
https://docs.vmware.com/en/VMware-vSphere/8.0/vsphere-vm-administration/GUID-EB5F090E-723C-4470-B640-50B35D1EC016.html#GUID-9A5093A5-C54F-4502-941B-3F9C0F573A39__GUID-40C60643-A2EB-4B05-8927-B51AF7A6CC5E

cloud-init, Release 24.1.3

GuestInfo keys

One method of providing meta, user, and vendor data is by setting the following key/value pairs on a VM’s
extraConfig property:

Property Description
guestinfo.metadata A YAML or JSON document containing the cloud-init metadata.
guestinfo.metadata.encoding The encoding type for guestinfo.metadata.
guestinfo.userdata A YAML document containing the cloud-init user data.
guestinfo.userdata.encoding The encoding type for guestinfo.userdata.
guestinfo.vendordata A YAML document containing the cloud-init vendor data.
guestinfo.vendordata.encoding The encoding type for guestinfo.vendordata.

All guestinfo.*.encoding values may be set to base64 or gzip+base64.

Features

This section reviews several features available in this datasource.

Graceful rpctool fallback

The datasource initially attempts to use the program vmware-rpctool if it is available. However, if the program
returns a non-zero exit code, then the datasource falls back to using the program vmtoolsd with the --cmd argument.

On some older versions of ESXi and open-vm-tools, the vmware-rpctool program is much more performant than
vmtoolsd. While this gap was closed, it is not reasonable to expect the guest where cloud-init is running to know
whether the underlying hypervisor has the patch.

Additionally, vSphere VMs may have the following present in their VMX file:

guest_rpc.rpci.auth.cmd.info-set = "TRUE"
guest_rpc.rpci.auth.cmd.info-get = "TRUE"

The above configuration causes the vmware-rpctool command to return a non-zero exit code with the error message
Permission denied. If this should occur, the datasource falls back to using vmtoolsd.

Instance data and lazy networks

One of the hallmarks of cloud-init is its use of instance-data and JINJA queries – the ability to write queries in
user and vendor data that reference runtime information present in /run/cloud-init/instance-data.json. This
works well when the metadata provides all of the information up front, such as the network configuration. For systems
that rely on DHCP, however, this information may not be available when the metadata is persisted to disk.

This datasource ensures that even if the instance is using DHCP to configure networking, the same details about the
configured network are available in /run/cloud-init/instance-data.json as if static networking was used. This
information collected at runtime is easy to demonstrate by executing the datasource on the command line. From the
root of this repository, run the following command:

PYTHONPATH="$(pwd)" python3 cloudinit/sources/DataSourceVMware.py

The above command will result in output similar to the below JSON:

2.4. Reference 245

https://vdc-repo.vmware.com/vmwb-repository/dcr-public/723e7f8b-4f21-448b-a830-5f22fd931b01/5a8257bd-7f41-4423-9a73-03307535bd42/doc/vim.vm.ConfigInfo.html

cloud-init, Release 24.1.3

{
"hostname": "akutz.localhost",
"local-hostname": "akutz.localhost",
"local-ipv4": "192.168.0.188",
"local_hostname": "akutz.localhost",
"network": {

"config": {
"dhcp": true

},
"interfaces": {

"by-ipv4": {
"172.0.0.2": {

"netmask": "255.255.255.255",
"peer": "172.0.0.2"

},
"192.168.0.188": {

"broadcast": "192.168.0.255",
"mac": "64:4b:f0:18:9a:21",
"netmask": "255.255.255.0"

}
},
"by-ipv6": {

"fd8e:d25e:c5b6:1:1f5:b2fd:8973:22f2": {
"flags": 208,
"mac": "64:4b:f0:18:9a:21",
"netmask": "ffff:ffff:ffff:ffff::/64"

}
},
"by-mac": {

"64:4b:f0:18:9a:21": {
"ipv4": [

{
"addr": "192.168.0.188",
"broadcast": "192.168.0.255",
"netmask": "255.255.255.0"

}
],
"ipv6": [

{
"addr": "fd8e:d25e:c5b6:1:1f5:b2fd:8973:22f2",
"flags": 208,
"netmask": "ffff:ffff:ffff:ffff::/64"

}
]

},
"ac:de:48:00:11:22": {

"ipv6": []
}

}
}

},
"wait-on-network": {

"ipv4": true,
(continues on next page)

246 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

"ipv6": "false"
}

}

Redacting sensitive information (GuestInfo keys transport only)

Sometimes the cloud-init user data might contain sensitive information, and it may be desirable to have the
guestinfo.userdata key (or other guestinfo keys) redacted as soon as its data is read by the datasource. This
is possible by adding the following to the metadata:

redact: # formerly named cleanup-guestinfo, which will also work
- userdata
- vendordata

When the above snippet is added to the metadata, the datasource will iterate over the elements in the redact array and
clear each of the keys. For example, when the guestinfo transport is used, the above snippet will cause the following
commands to be executed:

vmware-rpctool "info-set guestinfo.userdata ---"
vmware-rpctool "info-set guestinfo.userdata.encoding "
vmware-rpctool "info-set guestinfo.vendordata ---"
vmware-rpctool "info-set guestinfo.vendordata.encoding "

Please note that keys are set to the valid YAML string --- as it is not possible remove an existing key from the
guestinfo key-space. A key’s analogous encoding property will be set to a single white-space character, causing the
datasource to treat the actual key value as plain-text, thereby loading it as an empty YAML doc (hence the aforemen-
tioned ---).

Reading the local IP addresses

This datasource automatically discovers the local IPv4 and IPv6 addresses for a guest operating system based on the
default routes. However, when inspecting a VM externally, it’s not possible to know what the default IP address is for
the guest OS. That’s why this datasource sets the discovered, local IPv4 and IPv6 addresses back in the guestinfo
namespace as the following keys:

• guestinfo.local-ipv4

• guestinfo.local-ipv6

It is possible that a host may not have any default, local IP addresses. It’s also possible the reported, local addresses are
link-local addresses. But these two keys may be used to discover what this datasource determined were the local IPv4
and IPv6 addresses for a host.

2.4. Reference 247

cloud-init, Release 24.1.3

Waiting on the network

Sometimes cloud-init may bring up the network, but it will not finish coming online before the datasource’s setup
function is called, resulting in a /var/run/cloud-init/instance-data.json file that does not have the correct
network information. It is possible to instruct the datasource to wait until an IPv4 or IPv6 address is available before
writing the instance data with the following metadata properties:

wait-on-network:
ipv4: true
ipv6: true

If either of the above values are true, then the datasource will sleep for a second, check the network status, and repeat
until one or both addresses from the specified families are available.

Walkthrough of GuestInfo keys transport

The following series of steps is a demonstration of how to configure a VM with this datasource using the GuestInfo
keys transport:

1. Create the metadata file for the VM. Save the following YAML to a file named metadata.yaml:

instance-id: cloud-vm
local-hostname: cloud-vm
network:
version: 2
ethernets:
nics:
match:
name: ens*

dhcp4: yes

2. Create the userdata file userdata.yaml:

#cloud-config

users:
- default
- name: akutz
primary_group: akutz
sudo: ALL=(ALL) NOPASSWD:ALL
groups: sudo, wheel
lock_passwd: true
ssh_authorized_keys:
- ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQDE0c5FczvcGSh/tG4iw+Fhfi/O5/EvUM/

→˓96js65tly4++YTXK1d9jcznPS5ruDlbIZ30oveCBd3kT8LLVFwzh6hepYTf0YmCTpF4eDunyqmpCXDvVscQYRXyasEm5olGmVe05RrCJSeSShAeptv4ueIn40kZKOghinGWLDSZG4+FFfgrmcMCpx5YSCtX2gvnEYZJr0czt4rxOZuuP7PkJKgC/
→˓mt2PcPjooeX00vAj81jjU2f3XKrjjz2u2+KIt9eba+vOQ6HiC8c2IzRkUAJ5i1atLy8RIbejo23+0P4N2jjk17QySFOVHwPBDTYb0/
→˓0M/4ideeU74EN/
→˓CgVsvO6JrLsPBR4dojkV5qNbMNxIVv5cUwIy2ThlLgqpNCeFIDLCWNZEFKlEuNeSQ2mPtIO7ETxEL2Cz5y/
→˓7AIuildzYMc6wi2bofRC8HmQ7rMXRWdwLKWsR0L7SKjHblIwarxOGqLnUI+k2E71YoP7SZSlxaKi17pqkr0OMCF+kKqvcvHAQuwGqyumTEWOlH6TCx1dSPrW+pVCZSHSJtSTfDW2uzL6y8k10MT06+pVunSrWo5LHAXcS91htHV1M1UrH/
→˓tZKSpjYtjMb5+RonfhaFRNzvj7cCE1f3Kp8UVqAdcGBTtReoE8eRUT63qIxjw03a7VwAyB2w+9cu1R9/
→˓vAo8SBeRqw== sakutz@gmail.com

3. Please note this step requires that the VM be powered off. All of the commands below use the VMware CLI tool,
govc.

248 Chapter 2. Project and community

https://github.com/vmware/govmomi/blob/master/govc

cloud-init, Release 24.1.3

Go ahead and assign the path to the VM to the environment variable VM:

export VM="/inventory/path/to/the/vm"

4. Power off the VM:

To ensure the next power-on operation results in a first-boot scenario for cloud-init, it may be necessary to
run the following command just before powering off the VM:

cloud-init clean --logs --machine-id

Otherwise cloud-init may not run in first-boot mode. For more information on how the boot mode is deter-
mined, please see the First Boot Documentation.

govc vm.power -off "${VM}"

5. Export the environment variables that contain the cloud-init metadata and user data:

export METADATA=$(gzip -c9 <metadata.yaml | { base64 -w0 2>/dev/null || base64; }) \
USERDATA=$(gzip -c9 <userdata.yaml | { base64 -w0 2>/dev/null || base64; })

6. Assign the metadata and user data to the VM:

govc vm.change -vm "${VM}" \
-e guestinfo.metadata="${METADATA}" \
-e guestinfo.metadata.encoding="gzip+base64" \
-e guestinfo.userdata="${USERDATA}" \
-e guestinfo.userdata.encoding="gzip+base64"

Note: Please note the above commands include specifying the encoding for the properties. This is important as
it informs the datasource how to decode the data for cloud-init. Valid values for metadata.encoding and
userdata.encoding include:

• base64

• gzip+base64

7. Power on the VM:

govc vm.power -on "${VM}"

If all went according to plan, the CentOS box is:

• Locked down, allowing SSH access only for the user in the user data.

• Configured for a dynamic IP address via DHCP.

• Has a hostname of cloud-vm.

2.4. Reference 249

cloud-init, Release 24.1.3

Examples of common configurations

Setting the hostname

The hostname is set by way of the metadata key local-hostname.

Setting the instance ID

The instance ID may be set by way of the metadata key instance-id. However, if this value is absent then the instance
ID is read from the file /sys/class/dmi/id/product_uuid.

Providing public SSH keys

The public SSH keys may be set by way of the metadata key public-keys-data. Each newline-terminated string will
be interpreted as a separate SSH public key, which will be placed in distro’s default user’s ~/.ssh/authorized_keys.
If the value is empty or absent, then nothing will be written to ~/.ssh/authorized_keys.

Configuring the network

The network is configured by setting the metadata key network with a value consistent with Network Config Version
1 or Version 2, depending on the Linux distro’s version of cloud-init.

The metadata key network.encoding may be used to indicate the format of the metadata key network. Valid encod-
ings are base64 and gzip+base64.

Vultr

The Vultr datasource retrieves basic configuration values from the locally accessible metadata service. All data is
served over HTTP from the address 169.254.169.254. The endpoints are documented in the metadata service doc-
umentation.

Configuration

Vultr’s datasource can be configured as follows:

datasource:
Vultr:
url: 'http://169.254.169.254'
retries: 3
timeout: 2
wait: 2

• url: The URL used to acquire the metadata configuration.

• retries: Determines the number of times to attempt to connect to the metadata service.

• timeout: Determines the timeout (in seconds) to wait for a response from the metadata service.

• wait: Determines the timeout (in seconds) to wait before retrying after accessible failure.

250 Chapter 2. Project and community

https://www.vultr.com/
https://www.vultr.com/metadata/
https://www.vultr.com/metadata/

cloud-init, Release 24.1.3

WSL

The Windows Subsystem for Linux (WSL) somewhat resembles a container hypervisor. A Windows user may have
as many Linux distro instances as they wish, either created by the distro-launcher workflow (for the distros delivered
through MS Store) or by importing a tarball containing a root filesystem. This page assumes the reader is familiar with
WSL. To learn more about that, please visit the Microsoft documentation.

Requirements

1. WSL interoperability must be enabled. The datasource needs to execute some Windows binaries to compute
the possible locations of the user data files.

2. WSL automount must be enabled. The datasource needs to access files in the Windows host filesystem.

3. The init system must be aware of cloud-init. WSL has opt-in support for systemd, thus for distros that rely on
it, such as Ubuntu, cloud-init will run automatically if systemd is enabled via the /etc/wsl.conf. The Ubuntu
applications distributed via Microsoft Store enable systemd in the first boot, so no action is required if the user
sets up a new instance by using them. Users of other distros may find it surprising that cloud-init doesn’t run
automatically by default. At the time of this writing, only systemd distros are supported by the WSL datasource,
although there is nothing hard-coded in the implementation code that requires it, so non-systemd distros may
find ways to run cloud-init and make it just work.

Notice that requirements 1 and 2 are met by default, i.e. WSL grants those features enabled. Users can disable those
features, though. That would prevent the datasource from working. For more information about how to configure WSL,
check the official documentation.

User data configuration

The WSL datasource relies exclusively on the Windows filesystem as the provider of user data. Access to those files is
provided by WSL itself unless disabled by the user, thus the datasource doesn’t require any special component running
on the Windows host to provide such data.

User data can be supplied in any format supported by cloud-init, such as YAML cloud-config files or shell scripts. At
runtime, the WSL datasource looks for user data in the following locations inside the Windows host filesystem, in the
order specified below:

1. %USERPROFILE%\.cloud-init\<InstanceName>.user-data holds user data for a specific instance config-
uration. The datasource resolves the name attributed by WSL to the instance being initialized and looks for this
file before any of the subsequent alternatives. Example: sid-mlkit.user-data matches an instance named
Sid-MLKit.

2. %USERPROFILE%\.cloud-init\<ID>-<VERSION_ID>.user-data for the distro-specific configuration,
matched by the distro ID and VERSION_ID entries as specified in /etc/os-release. If VERSION_ID is
not present, then VERSION_CODENAME will be used instead. Example: ubuntu-22.04.user-data will
affect any instance created from an Ubuntu 22.04 Jammy Jellyfish image if a more specific configuration file
does not match.

3. %USERPROFILE%\.cloud-init\<ID>-all.user-data for the distro-specific configuration, matched by the
distro ID entry in /etc/os-release, regardless of the release version. Example: debian-all.user-data
will affect any instance created from any Debian GNU/Linux image, regardless of which release, if a more
specific configuration file does not match.

4. %USERPROFILE%\.cloud-init\default.user-data for the configuration affecting all instances, regardless
of which distro and release version, if a more specific configuration file does not match. That could be used, for
example, to automatically create a user with the same name across all WSL instances a user may have.

2.4. Reference 251

https://learn.microsoft.com/windows/wsl/about
https://learn.microsoft.com/windows/wsl/wsl-config#configuration-settings-for-wslconf

cloud-init, Release 24.1.3

Only the first match is loaded, and no config merging is done, even in the presence of errors. That avoids unexpected
behaviour due to surprising merge scenarios. Also, notice that the file name casing is irrelevant since both the Windows
file names, as well as the WSL distro names, are case-insensitive by default. If none are found, cloud-init remains
disabled.

Note: Some users may have configured case sensitivity for file names on Windows. Note that user data files will still
be matched case-insensitively. If there are both InstanceName.user-data and instancename.user-data, which one will
be chosen is arbitrary and should not be relied on. Thus it’s recommended to avoid that scenario to prevent confusion.

Since WSL instances are scoped by the Windows user, having the user data files inside the %USERPROFILE% directory
(typically C:\Users\<USERNAME>) ensures that WSL instance initialization won’t be subject to naming conflicts if the
Windows host is shared by multiple users.

Vendor and metadata

The current implementation doesn’t allow supplying vendor data. The reasoning is that vendor data adds layering, thus
complexity, for no real benefit to the user. Supplying vendor data could be relevant to WSL itself, if the subsystem was
aware of cloud-init and intended to leverage it, which is not the case to the best of our knowledge at the time of this
writing.

Most of what metadata is intended for is not applicable under WSL, such as setting a hostname. Yet, the knowl-
edge of metadata.instance-id is vital for cloud-init. So, this datasource provides a default value but also sup-
ports optionally sourcing metadata from a per-instance specific configuration file: %USERPROFILE%\.cloud-init\
<InstanceName>.meta-data. If that file exists, it is a YAML-formatted file minimally providing a value for instance
ID such as: instance-id: x-y-z. Advanced users looking to share snapshots or relaunch a snapshot where cloud-
init is re-triggered, must run sudo cloud-init clean --logs on the instance before snapshot/export, or create the
appropriate .meta-data file containing instance-id: some-new-instance-id.

Unsupported or restricted modules and features

Certain features of cloud-init and its modules either require further customization in the code to better fit the WSL
platform or cannot be supported at all due to the constraints of that platform. When writing user-data config files,
please check the following restrictions:

• File paths in an include file must be Linux absolute paths.

Users may be surprised with that requirement since the user data files are inside the Windows file system. But
remember that cloud-init is still running inside a Linux instance, and the files referenced in the include user data
file will be read by cloud-init, thus they must be represented with paths understandable inside the Linux instance.
Most users will find their Windows system drive mounted as /mnt/c, so let’s consider that assumption in the
following example:

C:\Users\Me\.cloud-init\noble-cpp.user-data

#include
/mnt/c/Users/me/.cloud-init/config.user-data
/mnt/c/Users/me/Downloads/cpp.yaml

When initializing an instance named Noble-Cpp cloud-init will find that include file, referring to files inside the Win-
dows file system, and will load them effectively. A failure would happen if Windows paths were otherwise in the include
file.

• Network configuration is not supported.

252 Chapter 2. Project and community

cloud-init, Release 24.1.3

WSL has full control of the instances’ networking features and configuration. A limited set of options for net-
working is exposed to the user via /etc/wsl.conf. Those options don’t fit well with the networking model
cloud-init expects or understands.

• Set hostname.

WSL automatically assigns the instance hostname and any attempt to change it will take effect only until the next
boot when WSL takes over again. The user can set the desired hostname via /etc/wsl.conf, if necessary.

• Default user.

While creating users through cloud-init works as in any other platform, WSL has the concept of the default user,
which is the user logged in by default. So, to create the default user with cloud-init, one must supply user data
to the Users and Groups module and write the entry in /etc/wsl.conf to make that user the default. See the
example:

#cloud-config
users:
- name: j
gecos: Agent J
groups: users,sudo,netdev,audio
sudo: ALL=(ALL) NOPASSWD:ALL
shell: /bin/bash
lock_passwd: true

write_files:
- path: /etc/wsl.conf
append: true
contents: |
[user]
default=j

• Disk setup, Growpart, Mounts and Resizefs.

The root filesystem must have the layout expected by WSL. Other mount points may work, depending on how the
hardware devices are exposed by the Windows host, and fstab processing during boot is subject to configuration
via /etc/wsl.conf, so users should expect limited functionality.

• GRUB dpkg.

WSL controls the boot process, meaning that attempts to install and configure GRUB as any other bootloader
won’t be effective.

• Resolv conf and update etc/ hosts.

WSL automatically generates those files by default, unless configured to behave otherwise in /etc/wsl.conf.
Overwriting may work, but only until the next reboot.

ZStack

ZStack platform provides an AWS EC2 metadata service, but with different datasource identity. More information
about ZStack can be found at ZStack.

2.4. Reference 253

https://www.zstack.io

cloud-init, Release 24.1.3

Discovery

To determine whether a VM is running on the ZStack platform, cloud-init checks DMI information via dmidecode
-s chassis-asset-tag. If the output ends with .zstack.io, it’s running on the ZStack platform.

Metadata

The same way as with EC2, instance metadata can be queried at:

GET http://169.254.169.254/2009-04-04/meta-data/
instance-id
local-hostname

User data

The same way as with EC2, instance user data can be queried at:

GET http://169.254.169.254/2009-04-04/user-data/
meta_data.json
user_data
password

2.4.8 Supported distros

Cloud-init has support for multiple different operating systems. Currently support includes various different distribu-
tions within the Unix family of operating systems. See the complete list below.

• AlmaLinux

• Alpine Linux

• Arch Linux

• CentOS

• CloudLinux

• Container-Optimized OS

• Debian

• DragonFlyBSD

• EuroLinux

• Fedora

• FreeBSD

• Gentoo

• MarinerOS

• MIRACLE LINUX

• NetBSD

• OpenBSD

254 Chapter 2. Project and community

cloud-init, Release 24.1.3

• openEuler

• OpenCloudOS

• OpenMandriva

• PhotonOS

• Red Hat Enterprise Linux

• Rocky

• SLES/openSUSE

• TencentOS

• Ubuntu

• Virtuozzo

If you would like to add support for another distributions, start by taking a look at another distro module in cloudinit/
distros/.

Note: While BSD variants are not typically referred to as “distributions”, cloud-init has an abstraction to account for
operating system differences, which should be contained in cloudinit/distros/.

2.4.9 Network configuration

Default behaviour

Cloud-init searches for network configuration in order of increasing precedence; each item overriding the previous.

• Datasource: For example, OpenStack may provide network config in the MetaData Service.

• System config: A network: entry in /etc/cloud/cloud.cfg.d/* configuration files.

• Kernel command line: ip= or network-config=<Base64 encoded YAML config string>

Cloud-init will write out the following files representing the network-config processed:

• /run/cloud-init/network-config.json: world-readable JSON containing the selected source network-
config JSON used by cloud-init network renderers.

User data cannot change an instance’s network configuration. In the absence of network configuration in any of the
above sources, cloud-init will write out a network configuration that will issue a DHCP request on a “first” network
interface.

Note: The network-config value is expected to be a Base64 encoded YAML string in Networking config Version 1
or Networking config Version 2 format. Optionally, it can be compressed with gzip prior to Base64 encoding.

2.4. Reference 255

https://github.com/canonical/cloud-init/tree/main/cloudinit/distros

cloud-init, Release 24.1.3

Disabling network configuration

Users may disable cloud-init’s network configuration capability and rely on other methods, such as embedded con-
figuration or other customisations.

cloud-init supports the following methods for disabling cloud-init.

Kernel command line

Cloud-initwill check for the parameter network-config=disabled, which will automatically disable any network
configuration.

Example disabling kernel command line entry:

network-config=disabled

Cloud config

In the combined cloud-init configuration dictionary, merged from /etc/cloud/cloud.cfg and /etc/cloud/
cloud.cfg.d/*:

network:
config: disabled

If cloud-init’s networking config has not been disabled, and no other network information is found, then it will
proceed to generate a fallback networking configuration.

Disabling network activation

Some datasources may not be initialised until after the network has been brought up. In this case, cloud-init will
attempt to bring up the interfaces specified by the datasource metadata using a network activator discovered by clou-
dinit.net.activators.select_activator.

This behaviour can be disabled in the cloud-init configuration dictionary, merged from /etc/cloud/cloud.cfg
and /etc/cloud/cloud.cfg.d/*:

disable_network_activation: true

Fallback network configuration

Cloud-init will attempt to determine which, of any attached network devices, is most likely to have a connection and
then generate a network configuration to issue a DHCP request on that interface.

Cloud-init runs during early boot and does not expect composed network devices (such as Bridges) to be avail-
able. Cloud-init does not consider the following interface devices as likely “first” network interfaces for fallback
configuration; they are filtered out from being selected.

• loopback: name=lo

• Virtual Ethernet: name=veth*

• Software Bridges: type=bridge

• Software VLANs: type=vlan

256 Chapter 2. Project and community

https://github.com/canonical/cloud-init/blob/main/cloudinit/net/activators.py#L249
https://github.com/canonical/cloud-init/blob/main/cloudinit/net/activators.py#L249

cloud-init, Release 24.1.3

Cloud-init will prefer network interfaces that indicate they are connected via the Linux carrier flag being set. If
no interfaces are marked as connected, then all unfiltered interfaces are potential connections.

Of the potential interfaces, cloud-init will attempt to pick the “right” interface given the information it has available.

Finally, after selecting the “right” interface, a configuration is generated and applied to the system.

Note: PhotonOS disables fallback networking configuration by default, leaving network unrendered when no
other network config is provided. If fallback config is still desired on PhotonOS, it can be enabled by providing
disable_fallback_netcfg: false in /etc/cloud/cloud.cfg:sys_config settings.

Network configuration sources

Cloud-init accepts a number of different network configuration formats in support of different cloud substrates. The
datasource for these clouds in cloud-init will detect and consume datasource-specific network configuration formats
for use when writing an instance’s network configuration.

The following datasources optionally provide network configuration:

• Config drive

– OpenStack Metadata Service Network

– Network configuration ENI (legacy)

• DigitalOcean

– DigitalOcean JSON metadata

• LXD

– LXD

• NoCloud

– Networking config Version 1

– Networking config Version 2

– Network configuration ENI (legacy)

• OpenNebula

– Network configuration ENI (legacy)

• OpenStack

– Network configuration ENI (legacy)

– OpenStack Metadata Service Network

• SmartOS Datasource

– SmartOS JSON Metadata

• UpCloud

– UpCloud JSON metadata

• Vultr

– Vultr JSON metadata

For more information on network configuration formats:

2.4. Reference 257

https://specs.openstack.org/openstack/nova-specs/specs/liberty/implemented/metadata-service-network-info.html
https://developers.digitalocean.com/documentation/metadata/
https://documentation.ubuntu.com/lxd/en/latest/cloud-init/#how-to-specify-network-configuration-data
https://specs.openstack.org/openstack/nova-specs/specs/liberty/implemented/metadata-service-network-info.html
https://eng.joyent.com/mdata/datadict.html
https://developers.upcloud.com/1.3/8-servers/#metadata-service
https://www.vultr.com/metadata/

cloud-init, Release 24.1.3

Network configuration ENI (legacy)

Cloud-init supports reading and writing network config in the ENI format which is consumed by the ifupdown tool
to parse and apply network configuration.

As an input format this is legacy. In cases where ENI format is available and another format is also available,
cloud-init will prefer to use the other, newer format.

This can happen in either NoCloud or OpenStack datasources.

Please reference existing documentation for the /etc/network/interfaces(5) format.

Networking config Version 1

This network configuration format lets users customise their instance’s networking interfaces by assigning subnet con-
figuration, virtual device creation (bonds, bridges, VLANs) routes and DNS configuration.

Required elements of a network config Version 1 are config and version.

Cloud-init will read this format from Base configuration.

For example, the following could be present in /etc/cloud/cloud.cfg.d/custom-networking.cfg:

network:
version: 1
config:
- type: physical
name: eth0
subnets:
- type: dhcp

The NoCloud datasource can also provide cloud-init networking configuration in this format.

Configuration types

Within the network config portion, users include a list of configuration types. The current list of support type values
are as follows:

• physical: Physical

• bond: Bond

• bridge: Bridge

• vlan: VLAN

• nameserver: Nameserver

• route: Route

Physical, Bond, Bridge and VLAN types may also include IP configuration under the key subnets.

• subnets: Subnet/IP

258 Chapter 2. Project and community

http://manpages.ubuntu.com/manpages/trusty/en/man5/interfaces.5.html

cloud-init, Release 24.1.3

Physical

The physical type configuration represents a “physical” network device, typically Ethernet-based. At least one of
these entries is required for external network connectivity. Type physical requires only one key: name. A physical
device may contain some or all of the following keys:

name: <desired device name>

A device’s name must be less than 15 characters. Names exceeding the maximum will be truncated. This is a limitation
of the Linux kernel network-device structure.

mac_address: <MAC Address>

The MAC Address is a device unique identifier that most Ethernet-based network devices possess. Specifying a MAC
Address is optional. Letters must be lowercase.

Note: It is best practice to “quote” all MAC addresses, since an unquoted MAC address might be incorrectly interpreted
as an integer in YAML.

Note: Cloud-init will handle the persistent mapping between a device’s name and the mac_address.

mtu: <MTU SizeBytes>

The MTU key represents a device’s Maximum Transmission Unit, which is the largest size packet or frame, specified
in octets (eight-bit bytes), that can be sent in a packet- or frame-based network. Specifying mtu is optional.

Note: The possible supported values of a device’s MTU are not available at configuration time. It’s possible to specify
a value too large or to small for a device, and may be ignored by the device.

accept-ra: <boolean>

The accept-ra key is a boolean value that specifies whether or not to accept Router Advertisements (RA) for this
interface. Specifying accept-ra is optional.

Physical example

network:
version: 1
config:
Simple network adapter
- type: physical
name: interface0
mac_address: '00:11:22:33:44:55'

(continues on next page)

2.4. Reference 259

https://yaml.org/type/int.html

cloud-init, Release 24.1.3

(continued from previous page)

Second nic with Jumbo frames
- type: physical
name: jumbo0
mac_address: 'aa:11:22:33:44:55'
mtu: 9000

10G pair
- type: physical
name: gbe0
mac_address: 'cd:11:22:33:44:00'

- type: physical
name: gbe1
mac_address: 'cd:11:22:33:44:02'

Bond

A bond type will configure a Linux software Bond with one or more network devices. A bond type requires the
following keys:

name: <desired device name>

A device’s name must be less than 15 characters. Names exceeding the maximum will be truncated. This is a limitation
of the Linux kernel network-device structure.

mac_address: <MAC Address>

When specifying MAC Address on a bond this value will be assigned to the bond device and may be different than the
MAC address of any of the underlying bond interfaces. Specifying a MAC Address is optional. If mac_address is
not present, then the bond will use one of the MAC Address values from one of the bond interfaces.

Note: It is best practice to “quote” all MAC addresses, since an unquoted MAC address might be incorrectly interpreted
as an integer in YAML.

bond_interfaces: <List of network device names>

The bond_interfaces key accepts a list of network device name values from the configuration. This list may be
empty.

260 Chapter 2. Project and community

https://yaml.org/type/int.html

cloud-init, Release 24.1.3

mtu: <MTU SizeBytes>

The MTU key represents a device’s Maximum Transmission Unit, the largest size packet or frame, specified in octets
(eight-bit bytes), that can be sent in a packet- or frame-based network. Specifying mtu is optional.

Note: The possible supported values of a device’s MTU are not available at configuration time. It’s possible to specify
a value too large or to small for a device, and may be ignored by the device.

params: <Dictionary of key: value bonding parameter pairs>

The params key in a bond holds a dictionary of bonding parameters. This dictionary may be empty. For more details
on what the various bonding parameters mean please read the Linux Kernel Bonding.txt.

Valid params keys are:

• active_slave: Set bond attribute

• ad_actor_key: Set bond attribute

• ad_actor_sys_prio: Set bond attribute

• ad_actor_system: Set bond attribute

• ad_aggregator: Set bond attribute

• ad_num_ports: Set bond attribute

• ad_partner_key: Set bond attribute

• ad_partner_mac: Set bond attribute

• ad_select: Set bond attribute

• ad_user_port_key: Set bond attribute

• all_slaves_active: Set bond attribute

• arp_all_targets: Set bond attribute

• arp_interval: Set bond attribute

• arp_ip_target: Set bond attribute

• arp_validate: Set bond attribute

• downdelay: Set bond attribute

• fail_over_mac: Set bond attribute

• lacp_rate: Set bond attribute

• lp_interval: Set bond attribute

• miimon: Set bond attribute

• mii_status: Set bond attribute

• min_links: Set bond attribute

• mode: Set bond attribute

• num_grat_arp: Set bond attribute

• num_unsol_na: Set bond attribute

2.4. Reference 261

cloud-init, Release 24.1.3

• packets_per_slave: Set bond attribute

• primary: Set bond attribute

• primary_reselect: Set bond attribute

• queue_id: Set bond attribute

• resend_igmp: Set bond attribute

• slaves: Set bond attribute

• tlb_dynamic_lb: Set bond attribute

• updelay: Set bond attribute

• use_carrier: Set bond attribute

• xmit_hash_policy: Set bond attribute

Bond example

network:
version: 1
config:
Simple network adapter
- type: physical
name: interface0
mac_address: '00:11:22:33:44:55'

10G pair
- type: physical
name: gbe0
mac_address: 'cd:11:22:33:44:00'

- type: physical
name: gbe1
mac_address: 'cd:11:22:33:44:02'

- type: bond
name: bond0
bond_interfaces:

- gbe0
- gbe1

params:
bond-mode: active-backup

Bridge

Type bridge requires the following keys:

• name: Set the name of the bridge.

• bridge_interfaces: Specify the ports of a bridge via their name. This list may be empty.

• params: A list of bridge params. For more details, please read the bridge-utils-interfaces manpage.

Valid keys are:

• bridge_ageing: Set the bridge’s ageing value.

• bridge_bridgeprio: Set the bridge device network priority.

262 Chapter 2. Project and community

cloud-init, Release 24.1.3

• bridge_fd: Set the bridge’s forward delay.

• bridge_hello: Set the bridge’s hello value.

• bridge_hw: Set the bridge’s MAC address.

• bridge_maxage: Set the bridge’s maxage value.

• bridge_maxwait: Set how long network scripts should wait for the bridge to be up.

• bridge_pathcost: Set the cost of a specific port on the bridge.

• bridge_portprio: Set the priority of a specific port on the bridge.

• bridge_ports: List of devices that are part of the bridge.

• bridge_stp: Set spanning tree protocol on or off.

• bridge_waitport: Set amount of time in seconds to wait on specific ports to become available.

Bridge example

network:
version: 1
config:
Simple network adapter
- type: physical
name: interface0
mac_address: '00:11:22:33:44:55'

Second nic with Jumbo frames
- type: physical
name: jumbo0
mac_address: 'aa:11:22:33:44:55'
mtu: 9000

- type: bridge
name: br0
bridge_interfaces:
- jumbo0

params:
bridge_ageing: 250
bridge_bridgeprio: 22
bridge_fd: 1
bridge_hello: 1
bridge_maxage: 10
bridge_maxwait: 0
bridge_pathcost:
- jumbo0 75

bridge_portprio:
- jumbo0 28

bridge_stp: 'off'
bridge_maxwait: 15

2.4. Reference 263

cloud-init, Release 24.1.3

VLAN

Type vlan requires the following keys:

• name: Set the name of the VLAN

• vlan_link: Specify the underlying link via its name.

• vlan_id: Specify the VLAN numeric id.

The following optional keys are supported:

mtu: <MTU SizeBytes>

The MTU key represents a device’s Maximum Transmission Unit, the largest size packet or frame, specified in octets
(eight-bit bytes), that can be sent in a packet- or frame-based network. Specifying mtu is optional.

Note: The possible supported values of a device’s MTU are not available at configuration time. It’s possible to specify
a value too large or to small for a device and may be ignored by the device.

VLAN example

network:
version: 1
config:
Physical interfaces.
- type: physical
name: eth0
mac_address: 'c0:d6:9f:2c:e8:80'

VLAN interface.
- type: vlan
name: eth0.101
vlan_link: eth0
vlan_id: 101
mtu: 1500

Nameserver

Users can specify a nameserver type. Nameserver dictionaries include the following keys:

• address: List of IPv4 or IPv6 address of nameservers.

• search: Optional. List of hostnames to include in the resolv.conf search path.

• interface: Optional. Ties the nameserver definition to the specified interface. The value specified here must
match the name of an interface defined in this config. If unspecified, this nameserver will be considered a global
nameserver.

264 Chapter 2. Project and community

cloud-init, Release 24.1.3

Nameserver example

network:
version: 1
config:

- type: physical
name: interface0
mac_address: '00:11:22:33:44:55'
subnets:

- type: static
address: 192.168.23.14/27
gateway: 192.168.23.1

- type: nameserver
interface: interface0 # Ties nameserver to interface0 only
address:
- 192.168.23.2
- 8.8.8.8

search:
- exemplary

Route

Users can include static routing information as well. A route dictionary has the following keys:

• destination: IPv4 network address with CIDR netmask notation.

• gateway: IPv4 gateway address with CIDR netmask notation.

• metric: Integer which sets the network metric value for this route.

Route example

network:
version: 1
config:

- type: physical
name: interface0
mac_address: '00:11:22:33:44:55'
subnets:

- type: static
address: 192.168.23.14/24
gateway: 192.168.23.1

- type: route
destination: 192.168.24.0/24
gateway: 192.168.24.1
metric: 3

2.4. Reference 265

cloud-init, Release 24.1.3

Subnet/IP

For any network device (one of the “config types”) users can define a list of subnets which contain ip configura-
tion dictionaries. Multiple subnet entries will create interface aliases, allowing a single interface to use different ip
configurations.

Valid keys for subnets include the following:

• type: Specify the subnet type.

• control: Specify ‘manual’, ‘auto’ or ‘hotplug’. Indicates how the interface will be handled during boot.

• address: IPv4 or IPv6 address. It may include CIDR netmask notation.

• netmask: IPv4 subnet mask in dotted format or CIDR notation.

• broadcast : IPv4 broadcast address in dotted format. This is only rendered if /etc/network/interfaces is
used.

• gateway: IPv4 address of the default gateway for this subnet.

• dns_nameservers: Specify a list of IPv4 dns server IPs to end up in resolv.conf.

• dns_search: Specify a list of search paths to be included in resolv.conf.

• routes: Specify a list of routes for a given interface.

Subnet types are one of the following:

• dhcp4: Configure this interface with IPv4 dhcp.

• dhcp: Alias for dhcp4.

• dhcp6: Configure this interface with IPv6 dhcp.

• static: Configure this interface with a static IPv4.

• static6: Configure this interface with a static IPv6.

• ipv6_dhcpv6-stateful: Configure this interface with dhcp6.

• ipv6_dhcpv6-stateless: Configure this interface with SLAAC and DHCP.

• ipv6_slaac: Configure address with SLAAC.

When making use of dhcp or either of the ipv6_dhcpv6 types, no additional configuration is needed in the subnet
dictionary.

Using ipv6_dhcpv6-stateless or ipv6_slaac allows the IPv6 address to be automatically configured with State-
Less Address AutoConfiguration (SLAAC). SLAAC requires support from the network, so verify that your cloud or
network offering has support before trying it out. With ipv6_dhcpv6-stateless, DHCPv6 is still used to fetch other
subnet details such as gateway or DNS servers. If you only want to discover the address, use ipv6_slaac.

Subnet DHCP example

network:
version: 1
config:

- type: physical
name: interface0
mac_address: '00:11:22:33:44:55'

(continues on next page)

266 Chapter 2. Project and community

https://tools.ietf.org/html/rfc4862

cloud-init, Release 24.1.3

(continued from previous page)

subnets:
- type: dhcp

Subnet static example

network:
version: 1
config:

- type: physical
name: interface0
mac_address: '00:11:22:33:44:55'
subnets:

- type: static
address: 192.168.23.14/27
gateway: 192.168.23.1
dns_nameservers:
- 192.168.23.2
- 8.8.8.8

dns_search:
- exemplary.maas

Multiple subnet example

The following will result in an interface0 using DHCP and interface0:1 using the static subnet configuration:

network:
version: 1
config:

- type: physical
name: interface0
mac_address: '00:11:22:33:44:55'
subnets:

- type: dhcp
- type: static
address: 192.168.23.14/27
gateway: 192.168.23.1
dns_nameservers:
- 192.168.23.2
- 8.8.8.8

dns_search:
- exemplary

2.4. Reference 267

cloud-init, Release 24.1.3

Subnet with routes example

network:
version: 1
config:

- type: physical
name: interface0
mac_address: '00:11:22:33:44:55'
subnets:

- type: dhcp
- type: static
address: 10.184.225.122
netmask: 255.255.255.252
routes:
- gateway: 10.184.225.121
netmask: 255.240.0.0
destination: 10.176.0.0

- gateway: 10.184.225.121
netmask: 255.240.0.0
destination: 10.208.0.0

Multi-layered configurations

Complex networking sometimes uses layers of configuration. The syntax allows users to build those layers one at a
time. All of the virtual network devices supported allow specifying an underlying device by their name value.

Bonded VLAN example

network:
version: 1
config:
10G pair
- type: physical
name: gbe0
mac_address: 'cd:11:22:33:44:00'

- type: physical
name: gbe1
mac_address: 'cd:11:22:33:44:02'

Bond.
- type: bond
name: bond0
bond_interfaces:
- gbe0
- gbe1

params:
bond-mode: 802.3ad
bond-lacp_rate: fast

A Bond VLAN.
- type: vlan
name: bond0.200

(continues on next page)

268 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

vlan_link: bond0
vlan_id: 200
subnets:
- type: dhcp4

Multiple VLAN example

network:
version: 1
config:
- name: eth0
mac_address: 'd4:be:d9:a8:49:13'
mtu: 1500
subnets:
- address: 10.245.168.16/21
dns_nameservers:
- 10.245.168.2
gateway: 10.245.168.1
type: static

type: physical
- name: eth1
mac_address: 'd4:be:d9:a8:49:15'
mtu: 1500
subnets:
- address: 10.245.188.2/24
dns_nameservers: []
type: static

type: physical
- name: eth1.2667
mtu: 1500
subnets:
- address: 10.245.184.2/24
dns_nameservers: []
type: static

type: vlan
vlan_id: 2667
vlan_link: eth1

- name: eth1.2668
mtu: 1500
subnets:
- address: 10.245.185.1/24
dns_nameservers: []
type: static

type: vlan
vlan_id: 2668
vlan_link: eth1

- name: eth1.2669
mtu: 1500
subnets:
- address: 10.245.186.1/24

(continues on next page)

2.4. Reference 269

cloud-init, Release 24.1.3

(continued from previous page)

dns_nameservers: []
type: static

type: vlan
vlan_id: 2669
vlan_link: eth1

- name: eth1.2670
mtu: 1500
subnets:
- address: 10.245.187.2/24
dns_nameservers: []
type: static

type: vlan
vlan_id: 2670
vlan_link: eth1

- address: [10.245.168.2]
search:
- dellstack
type: nameserver

Networking config Version 2

Cloud-init’s support for Version 2 network config is a subset of the Version 2 format defined for the Netplan tool.
Cloud-init supports both reading and writing of Version 2. Writing support requires a distro with Netplan present.

Netplan passthrough

On a system with Netplan present, cloud-init will pass Version 2 configuration through to Netplan without modifi-
cation. On such systems, you do not need to limit yourself to the below subset of Netplan’s configuration format.

Warning: If you are writing or generating network configuration that may be used on non-netplan systems, you
must limit yourself to the subset described in this document, or you will see network configuration failures on
non-netplan systems.

Version 2 configuration format

The network key has at least two required elements. First, it must include version: 2 and one or more of possible
device types.

Cloud-init will read this format from Base configuration.

For example the following could be present in /etc/cloud/cloud.cfg.d/custom-networking.cfg:

network:
version: 2
ethernets: []

It may also be provided in other locations including the NoCloud. See Network configuration for other places.

Supported device types values are as follows:

270 Chapter 2. Project and community

https://netplan.io

cloud-init, Release 24.1.3

• ethernets: Ethernets

• bonds: Bonds

• bridges: Bridges

• vlans: VLANs

Each type block contains device definitions as a map (where the keys are called “configuration IDs”). Each entry
under the types may include IP and/or device configuration.

Device configuration IDs

The key names below the per-device-type definition maps (like ethernets:) are called “ID”s. They must be unique
throughout the entire set of configuration files. Their primary purpose is to serve as anchor names for composite
devices, for example to enumerate the members of a bridge that is currently being defined.

There are two physically/structurally different classes of device definitions, and the ID field has a different interpretation
for each:

Physical devices (e.g., ethernet, wifi)

These can dynamically come and go between reboots and even during runtime (hotplugging). In the generic case, they
can be selected by match: rules on desired properties, such as name/name pattern, MAC address, or driver. In general
these will match any number of devices (unless they refer to properties which are unique such as the full path or MAC
address), so without further knowledge about the hardware, these will always be considered as a group.

It is valid to specify no match rules at all, in which case the ID field is simply the interface name to be matched. This
is mostly useful if you want to keep simple cases simple, and it’s how network device configuration has been done for
a long time.

If there are match: rules, then the ID field is a purely opaque name which is only being used for references from
definitions of compound devices in the config.

Virtual devices (e.g., veth, bridge, bond)

These are fully under the control of the config file(s) and the network stack, i.e., these devices are being created instead
of matched. Thus match: and set-name: are not applicable for these, and the ID field is the name of the created
virtual device.

Common properties for physical device types

match: <(mapping)>

This selects a subset of available physical devices by various hardware properties. The following configuration will then
apply to all matching devices, as soon as they appear. All specified properties must match. The following properties
for creating matches are supported:

2.4. Reference 271

cloud-init, Release 24.1.3

name: <(scalar)>

Current interface name. Globs are supported, and the primary use case for matching on names, as selecting one fixed
name can be more easily achieved with having no match: at all and just using the ID (see above). Note that currently
only networkd supports globbing, NetworkManager does not.

Example:

all cards on second PCI bus
match:
name: enp2*

macaddress: <(scalar)>

Device’s MAC address in the form xx:xx:xx:xx:xx:xx. Globs are not allowed. Letters must be lowercase.

Example:

fixed MAC address
match:
macaddress: "11:22:33:aa:bb:ff"

Note: It is best practice to “quote” all MAC addresses, since an unquoted MAC address might be incorrectly interpreted
as an integer in YAML.

driver: <(scalar)>

Kernel driver name, corresponding to the DRIVER udev property. Globs are supported. Matching on driver is only
supported with networkd.

Example:

first card of driver ``ixgbe``
match:
driver: ixgbe
name: en*s0

set-name: <(scalar)>

When matching on unique properties such as path or MAC, or with additional assumptions such as “there will only
ever be one wifi device”, match rules can be written so that they only match one device. Then this property can be used
to give that device a more specific/desirable/nicer name than the default from udev’s ifnames. Any additional device
that satisfies the match rules will then fail to get renamed and keep the original kernel name (and dmesg will show an
error).

272 Chapter 2. Project and community

https://yaml.org/type/int.html

cloud-init, Release 24.1.3

wakeonlan: <(bool)>

Enable wake on LAN. Off by default.

Common properties for all device types

renderer: <(scalar)>

Use the given networking backend for this definition. Currently supported are networkd and NetworkManager. This
property can be specified globally in networks:, for a device type (e.g., in ethernets:) or for a particular device
definition. Default is networkd.

Note: Cloud-init only supports networkd backend if rendering version2 config to the instance.

dhcp4: <(bool)>

Enable DHCP for IPv4. Off by default.

dhcp6: <(bool)>

Enable DHCP for IPv6. Off by default.

dhcp4-overrides and dhcp6-overrides: <(mapping)>

DHCP behaviour overrides. Overrides will only have an effect if the corresponding DHCP type is enabled. Refer to
Netplan#dhcp-overrides for more documentation.

Note: These properties are only consumed on netplan and networkd renderers.

The netplan renderer passes through everything and the networkd renderer consumes the following sub-properties:

• hostname *

• route-metric *

• send-hostname *

• use-dns

• use-domains

• use-hostname

• use-mtu *

• use-ntp

• use-routes *

2.4. Reference 273

https://netplan.io/reference#dhcp-overrides

cloud-init, Release 24.1.3

Note: Sub-properties marked with a * are unsupported for dhcp6-overrideswhen used with the networkd renderer.

Example:

dhcp4-overrides:
hostname: hal
route-metric: 1100
send-hostname: false
use-dns: false
use-domains: false
use-hostname: false
use-mtu: false
use-ntp: false
use-routes: false

addresses: <(sequence of scalars)>

Add static addresses to the interface in addition to the ones received through DHCP or RA. Each sequence entry is in
CIDR notation, i.e., of the form addr/prefixlen. addr is an IPv4 or IPv6 address as recognised by inet_pton(3)
and prefixlen the number of bits of the subnet.

Example: addresses: [192.168.14.2/24, 2001:1::1/64]

gateway4: or gateway6: <(scalar)>

Deprecated, see Netplan#default-routes. Set default gateway for IPv4/6, for manual address configuration. This requires
setting addresses too. Gateway IPs must be in a form recognised by inet_pton(3)

Example for IPv4: gateway4: 172.16.0.1 Example for IPv6: gateway6: 2001:4::1

mtu: <MTU SizeBytes>

The MTU key represents a device’s Maximum Transmission Unit, the largest size packet or frame, specified in octets
(eight-bit bytes), that can be sent in a packet- or frame-based network. Specifying mtu is optional.

nameservers: <(mapping)>

Set DNS servers and search domains, for manual address configuration. There are two supported fields: addresses:
is a list of IPv4 or IPv6 addresses similar to gateway*, and search: is a list of search domains.

Example:

nameservers:
search: [lab, home]
addresses: [8.8.8.8, FEDC::1]

274 Chapter 2. Project and community

https://netplan.io/reference#default-routes

cloud-init, Release 24.1.3

routes: <(sequence of mapping)>

Add device specific routes. Each mapping includes a to, via key with an IPv4 or IPv6 address as value. metric is an
optional value.

Example:

routes:
- to: 0.0.0.0/0
via: 10.23.2.1
metric: 3

Ethernets

Ethernet device definitions do not support any specific properties beyond the common ones described above.

Bonds

interfaces: <(sequence of scalars)>

All devices matching this ID list will be added to the bond.

Example:

ethernets:
switchports:
match: {name: "enp2*"}

[...]
bonds:
bond0:
interfaces: [switchports]

parameters: <(mapping)>

Customisation parameters for special bonding options. Time values are specified in seconds unless otherwise specified.

mode: <(scalar)>

Set the bonding mode used for the interfaces. The default is balance-rr (round robin). Possible values are
balance-rr, active-backup, balance-xor, broadcast, 802.3ad, balance-tlb, and balance-alb.

2.4. Reference 275

cloud-init, Release 24.1.3

lacp-rate: <(scalar)>

Set the rate at which LACPDUs are transmitted. This is only useful in 802.3ad mode. Possible values are slow (30
seconds, default), and fast (every second).

mii-monitor-interval: <(scalar)>

Specifies the interval for MII monitoring (verifying if an interface of the bond has carrier). The default is 0; which
disables MII monitoring.

min-links: <(scalar)>

The minimum number of links up in a bond to consider the bond interface to be up.

transmit-hash-policy: <(scalar)>

Specifies the transmit hash policy for the selection of slaves. This is only useful in balance-xor, 802.3ad and balance-tlb
modes. Possible values are layer2, layer3+4, layer2+3, encap2+3, and encap3+4.

ad-select: <(scalar)>

Set the aggregation selection mode. Possible values are stable, bandwidth, and count. This option is only used in
802.3ad mode.

all-slaves-active: <(bool)>

If the bond should drop duplicate frames received on inactive ports, set this option to false. If they should be delivered,
set this option to true. The default value is false, and is the desirable behaviour in most situations.

arp-interval: <(scalar)>

Set the interval value for how frequently ARP link monitoring should happen. The default value is 0, which disables
ARP monitoring.

arp-ip-targets: <(sequence of scalars)>

IPs of other hosts on the link which should be sent ARP requests in order to validate that a slave is up. This option
is only used when arp-interval is set to a value other than 0. At least one IP address must be given for ARP link
monitoring to function. Only IPv4 addresses are supported. You can specify up to 16 IP addresses. The default value
is an empty list.

276 Chapter 2. Project and community

cloud-init, Release 24.1.3

arp-validate: <(scalar)>

Configure how ARP replies are to be validated when using ARP link monitoring. Possible values are none, active,
backup, and all.

arp-all-targets: <(scalar)>

Specify whether to use any ARP IP target being up as sufficient for a slave to be considered up; or if all the targets must
be up. This is only used for active-backup mode when arp-validate is enabled. Possible values are any and all.

up-delay: <(scalar)>

Specify the delay before enabling a link once the link is physically up. The default value is 0.

down-delay: <(scalar)>

Specify the delay before disabling a link once the link has been lost. The default value is 0.

fail-over-mac-policy: <(scalar)>

Set whether to set all slaves to the same MAC address when adding them to the bond, or how else the system should
handle MAC addresses. The possible values are none, active, and follow.

gratuitous-arp: <(scalar)>

Specify how many ARP packets to send after failover. Once a link is up on a new slave, a notification is sent and
possibly repeated if this value is set to a number greater than 1. The default value is 1 and valid values are between 1
and 255. This only affects active-backup mode.

packets-per-slave: <(scalar)>

In balance-rr mode, specifies the number of packets to transmit on a slave before switching to the next. When this
value is set to 0, slaves are chosen at random. Allowable values are between 0 and 65535. The default value is 1. This
setting is only used in balance-rr mode.

primary-reselect-policy: <(scalar)>

Set the reselection policy for the primary slave. On failure of the active slave, the system will use this policy to decide
how the new active slave will be chosen and how recovery will be handled. The possible values are always, better,
and failure.

2.4. Reference 277

cloud-init, Release 24.1.3

learn-packet-interval: <(scalar)>

Specify the interval between sending Learning packets to each slave. The value range is between 1 and 0x7fffffff.
The default value is 1. This option only affects balance-tlb and balance-alb modes.

Bridges

interfaces: <(sequence of scalars)>

All devices matching this ID list will be added to the bridge.

Example:

ethernets:
switchports:
match: {name: "enp2*"}

[...]
bridges:
br0:
interfaces: [switchports]

parameters: <(mapping)>

Customisation parameters for special bridging options. Time values are specified in seconds unless otherwise stated.

ageing-time: <(scalar)>

Set the period of time to keep a MAC address in the forwarding database after a packet is received.

priority: <(scalar)>

Set the priority value for the bridge. This value should be a number between 0 and 65535. Lower values mean higher
priority. The bridge with the higher priority will be elected as the root bridge.

forward-delay: <(scalar)>

Specify the period of time the bridge will remain in Listening and Learning states before getting to the Forwarding
state. This value should be set in seconds for the systemd backend, and in milliseconds for the NetworkManager
backend.

278 Chapter 2. Project and community

cloud-init, Release 24.1.3

hello-time: <(scalar)>

Specify the interval between two hello packets being sent out from the root and designated bridges. Hello packets
communicate information about the network topology.

max-age: <(scalar)>

Set the maximum age of a hello packet. If the last hello packet is older than that value, the bridge will attempt to become
the root bridge.

path-cost: <(scalar)>

Set the cost of a path on the bridge. Faster interfaces should have a lower cost. This allows a finer control on the network
topology so that the fastest paths are available whenever possible.

stp: <(bool)>

Define whether the bridge should use Spanning Tree Protocol. The default value is “true”, which means that Spanning
Tree should be used.

VLANs

id: <(scalar)>

VLAN ID, a number between 0 and 4094.

link: <(scalar)>

ID of the underlying device definition on which this VLAN gets created.

Example:

ethernets:
eno1: {...}

vlans:
en-intra:
id: 1
link: eno1
dhcp4: yes

en-vpn:
id: 2
link: eno1
address: ...

2.4. Reference 279

cloud-init, Release 24.1.3

Examples

Configure an ethernet device with networkd, identified by its name, and enable DHCP:

network:
version: 2
ethernets:
eno1:
dhcp4: true

This is a complex example which shows most available features:

network:
version: 2
ethernets:
opaque ID for physical interfaces, only referred to by other stanzas
id0:
match:
macaddress: '00:11:22:33:44:55'

wakeonlan: true
dhcp4: true
addresses:
- 192.168.14.2/24
- 2001:1::1/64

gateway4: 192.168.14.1
gateway6: 2001:1::2
nameservers:
search: [foo.local, bar.local]
addresses: [8.8.8.8]

static routes
routes:

- to: 192.0.2.0/24
via: 11.0.0.1
metric: 3

lom:
match:
driver: ixgbe

you are responsible for setting tight enough match rules
that only match one device if you use set-name
set-name: lom1
dhcp6: true

switchports:
all cards on second PCI bus; unconfigured by themselves, will be added
to br0 below
match:
name: enp2*

mtu: 1280
bonds:
bond0:
interfaces: [id0, lom]

bridges:
the key name is the name for virtual (created) interfaces; no match: and
set-name: allowed

(continues on next page)

280 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

br0:
IDs of the components; switchports expands into multiple interfaces
interfaces: [wlp1s0, switchports]
dhcp4: true

vlans:
en-intra:
id: 1
link: id0
dhcp4: yes

Network configuration outputs

Cloud-init converts various forms of user-supplied or automatically generated configuration into an internal network
configuration state. From this state, cloud-init delegates rendering of the configuration to distro-supported formats.
The following renderers are supported in cloud-init:

NetworkManager

NetworkManager is the standard Linux network configuration tool suite. It supports a wide range of networking setups.
Configuration is typically stored in /etc/NetworkManager.

It is the default for a number of Linux distributions; notably Fedora, CentOS/RHEL, and their derivatives.

ENI

/etc/network/interfaces or ENI is supported by the ifupdown package found in Alpine Linux, Debian and
Ubuntu.

Netplan

Introduced in Ubuntu 16.10 (Yakkety Yak), Netplan has been the default network configuration tool in Ubuntu since
17.10 (Artful Aardvark). Netplan consumes Networking config Version 2 input and renders network configuration for
supported backends such as systemd-networkd and NetworkManager.

Sysconfig

Sysconfig format is used by RHEL, CentOS, Fedora and other derivatives.

2.4. Reference 281

https://networkmanager.dev
https://netplan.io/

cloud-init, Release 24.1.3

NetBSD, OpenBSD, FreeBSD

Network renders supporting BSD releases, which typically write configuration to /etc/rc.conf. Unique to BSD ren-
derers is that each renderer also calls something akin to FreeBSD.start_services which will invoke applicable network
services to setup the network, making network activators unneeded for BSD flavors at the moment.

Network output policy

The default policy for selecting a network renderer (in order of preference) is as follows:

• ENI

• Sysconfig

• Netplan

• NetworkManager

• FreeBSD

• NetBSD

• OpenBSD

• Networkd

The default policy for selecting a network activator (in order of preference) is as follows:

• ENI: using ifup, ifdown to manage device setup/teardown

• Netplan: using netplan apply to manage device setup/teardown

• NetworkManager: using nmcli to manage device setup/teardown

• Networkd: using ip to manage device setup/teardown

When applying the policy, cloud-init checks if the current instance has the correct binaries and paths to support the
renderer. The first renderer that can be used is selected. Users may override the network renderer policy by supplying
an updated configuration in cloud-config.

system_info:
network:
renderers: ['netplan', 'network-manager', 'eni', 'sysconfig', 'freebsd', 'netbsd',

→˓'openbsd']
activators: ['eni', 'netplan', 'network-manager', 'networkd']

Network configuration tools

Cloud-init contains a command used to test input/output conversion between formats. The tools/net-convert.
py in the cloud-init source repository is helpful in examining expected output for a given input format. If running
these commands from the cloud-init source directory, make sure to set the correct path PYTHON_PATH=.

CLI Interface:

$ cloud-init devel net-convert --help

Example output:

282 Chapter 2. Project and community

https://github.com/canonical/cloud-init/blob/main/cloudinit/net/freebsd.py#L46

cloud-init, Release 24.1.3

usage: /usr/bin/cloud-init devel net-convert [-h] -p PATH -k {eni,network_data.json,yaml,
→˓azure-imds,vmware-imc} -d PATH -D

{alpine,arch,azurelinux,debian,ubuntu,
→˓freebsd,dragonfly,gentoo,cos,netbsd,openbsd,almalinux,amazon,centos,cloudlinux,
→˓eurolinux,fedora,mariner,miraclelinux,openmandriva,photon,rhel,rocky,virtuozzo,
→˓opensuse,sles,openEuler}

[-m name,mac] [--debug] -O {eni,netplan,
→˓networkd,sysconfig,network-manager}

options:
-h, --help show this help message and exit
-p PATH, --network-data PATH

The network configuration to read
-k {eni,network_data.json,yaml,azure-imds,vmware-imc}, --kind {eni,network_data.json,

→˓yaml,azure-imds,vmware-imc}
The format of the given network config

-d PATH, --directory PATH
directory to place output in

-D {alpine,arch,azurelinux,debian,ubuntu,freebsd,dragonfly,gentoo,cos,netbsd,openbsd,
→˓almalinux,amazon,centos,cloudlinux,eurolinux,fedora,mariner,miraclelinux,openmandriva,
→˓photon,rhel,rocky,virtuozzo,opensuse,sles,openeuler}, --distro {alpine,arch,azurelinux,
→˓debian,ubuntu,freebsd,dragonfly,gentoo,cos,netbsd,openbsd,almalinux,amazon,centos,
→˓cloudlinux,eurolinux,fedora,mariner,miraclelinux,openmandriva,photon,rhel,rocky,
→˓virtuozzo,opensuse,sles,openEuler}
-m name,mac, --mac name,mac

interface name to mac mapping
--debug enable debug logging to stderr.
-O {eni,netplan,networkd,sysconfig,network-manager}, --output-kind {eni,netplan,

→˓networkd,sysconfig,network-manager}
The network config format to emit

Example of converting V2 to sysconfig:

$ cloud-init devel net-convert --network-data v2.yaml --kind yaml \
--output-kind sysconfig -d target

$ cat target/etc/sysconfig/network-scripts/ifcfg-eth*

Example output:

Created by cloud-init automatically, do not edit.
#
BOOTPROTO=static
DEVICE=eth7
IPADDR=192.168.1.5/255.255.255.0
ONBOOT=yes
TYPE=Ethernet
USERCTL=no
Created by cloud-init automatically, do not edit.
#
BOOTPROTO=dhcp
DEVICE=eth9
ONBOOT=yes
TYPE=Ethernet

(continues on next page)

2.4. Reference 283

cloud-init, Release 24.1.3

(continued from previous page)

USERCTL=no

2.4.10 Base configuration

Warning: This documentation is intended for custom image creators, such as distros and cloud providers, not end
users. Modifying the base configuration should not be necessary for end users and can result in a system that may
be unreachable or may no longer boot.

Cloud-init base config is primarily defined in two places:

• /etc/cloud/cloud.cfg

• /etc/cloud/cloud.cfg.d/*.cfg

See the configuration sources explanation for more information on how these files get sourced and combined with other
configuration.

Generation

cloud.cfg isn’t present in any of cloud-init’s source files. The configuration is templated and customised for each
distribution supported by cloud-init.

Base configuration keys

Module keys

Modules are grouped into the following keys:

• cloud_init_modules: Modules run during network timeframe.

• cloud_config_modules: Modules run during config timeframe.

• cloud_final_modules: Modules run during final timeframe.

Each module definition contains an array of strings, where each string is the name of the module. Each name is taken
directly from the module filename, with the cc_ prefix and .py suffix removed, and with - and _ being interchangeable.

Alternatively, in place of the module name, an array of <name>, <frequency>[, <args>] args may be specified.
See the module creation guidelines for more information on frequency and args.

Note: Most modules won’t run at all if they’re not triggered via a respective user data key, so removing modules or
changing the run frequency is not a recommended way to reduce instance boot time.

284 Chapter 2. Project and community

https://github.com/canonical/cloud-init/blob/main/config/cloud.cfg.tmpl

cloud-init, Release 24.1.3

Examples

To specify that only cc_final_message.py run during final timeframe:

cloud_final_modules:
- final_message

To change the frequency from the default of ALWAYS to ONCE:

cloud_final_modules:
- [final_message, once]

To include default arguments to the module (that may be overridden by user data):

cloud_final_modules:
- [final_message, once, "my final message"]

Datasource keys

Many datasources allow configuration of the datasource for use in querying the datasource for metadata using the
datasource key. This configuration is datasource dependent and can be found under each datasource’s respective
documentation. It will generally take the form of:

datasource:
<datasource_name>:
...

System info keys

These keys are used for setup of cloud-init itself, or the datasource or distro. Anything under system_info cannot
be overridden by vendor data, user data, or any other handlers or transforms. In some cases there may be a system_info
key used for the distro, while the same key is used outside of system_info for a user data module. Both keys will be
processed independently.

• system_info: Top-level key.

– paths: Definitions of common paths used by cloud-init.

∗ cloud_dir: Default: /var/lib/cloud.

∗ templates_dir: Default: /etc/cloud/templates.

– distro: Name of distro being used.

– default_user: Defines the default user for the system using the same user configuration as Users and
Groups. Note that this CAN be overridden if a users configuration is specified without a - default
entry.

– ntp_client: The default NTP client for the distro. Takes the same form as ntp_client defined in NTP.

– package_mirrors: Defines the package mirror info for apt.

– ssh_svcname: The SSH service name. For most distros this will be either ssh or sshd.

– network: Top-level key for distro-specific networking configuration.

2.4. Reference 285

https://github.com/canonical/cloud-init/blob/main/cloudinit/config/cc_final_message.py

cloud-init, Release 24.1.3

∗ renderers: Prioritised list of networking configurations to try on this system. The first valid entry
found will be used. Options are:

· eni: For /etc/network/interfaces.

· network-manager

· netplan

· networkd: For systemd-networkd.

· freebsd

· netbsd

· openbsd

∗ activators: Prioritised list of networking tools to try to activate network on this system. The first
valid entry found will be used. Options are:

· eni: For ifup/ifdown.

· netplan: For netplan generate/netplan apply.

· network-manager: For nmcli connection load/ nmcli connection up.

· networkd: For ip link set up/ip link set down.

– apt_get_command: Command used to interact with APT repositories. Default: apt-get.

– apt_get_upgrade_subcommand: APT subcommand used to upgrade system. Default: dist-upgrade.

– apt_get_wrapper: Command used to wrap the apt-get command.

∗ enabled: Whether to use the specified apt_wrapper command. If set to auto, use the command if
it exists on the PATH. Default: true.

∗ command: Command used to wrap any apt-get calls. Default: eatmydata.

Logging keys

See the logging explanation for a comprehensive logging explanation. Note that cloud-init has a default logging
definition that shouldn’t need to be altered. It is defined in this instance at /etc/cloud/cloud.cfg.d/05_logging.
cfg.

The logging keys used in the base configuration are as follows:

logcfg

A standard python fileConfig formatted log configuration. This is the primary logging configuration key and will take
precedence over log_cfgs or log_basic keys.

286 Chapter 2. Project and community

https://docs.python.org/3/library/logging.config.html#logging-config-fileformat

cloud-init, Release 24.1.3

log_cfgs

A list of logging configs in fileConfig format to apply when running cloud-init. Note that log_cfgs is used in
/etc/cloud.cfg.d/05_logging.cfg.

log_basic

Boolean value to determine if cloud-init should apply a basic default logging configuration if none has been pro-
vided. Defaults to true but only takes effect if logcfg or log_cfgs hasn’t been defined.

output

If and how to redirect stdout/stderr. Defined in /etc/cloud.cfg.d/05_logging.cfg and explained in the log-
ging explanation.

syslog_fix_perms

Takes a list of <owner:group> strings and will set the owner of def_log_file accordingly.

def_log_file

Only used in conjunction with syslog_fix_perms. Specifies the filename to be used for setting permissions. Defaults
to /var/log/cloud-init.log.

Other keys

network

The network configuration to be applied to this instance.

datasource_pkg_list

Prioritised list of python packages to search when finding a datasource. Automatically includes cloudinit.sources.

datasource_list

This key contains a prioritised list of datasources that cloud-init attempts to discover on boot. By default, this is
defined in /etc/cloud/cloud.cfg.d.

There are a few reasons to modify the datasource_list:

1. Override default datasource discovery priority order

2. Force cloud-init to use a specific datasource: A single entry in the list (or a single entry and None) will override
datasource discovery, which will force the specified datasource to run.

3. Remove known invalid datasources: this might improve boot speed on distros that do not use ds-identify to
detect and select the datasource,

2.4. Reference 287

https://docs.python.org/3/library/logging.config.html#logging-config-fileformat

cloud-init, Release 24.1.3

Warning: This key is unique in that it uses a subset of YAML syntax. It requires that the key and its contents, a
list, must share a single line - no newlines.

vendor_data/vendor_data2

Allows the user to disable vendor_data or vendor_data2 along with providing a prefix for any executed scripts.

Format is a dict with enabled and prefix keys:

• enabled: A boolean indicating whether to enable or disable the vendor_data.

• prefix: A path to prepend to any vendor_data-provided script.

manual_cache_clean

By default, cloud-init searches for a datasource on every boot. Setting this to true will disable this behaviour. This is
useful if your datasource information will not be present every boot. Default: false.

Example

On an Ubuntu system, /etc/cloud/cloud.cfg should look similar to:

The top level settings are used as module and base configuration.
A set of users which may be applied and/or used by various modules
when a 'default' entry is found it will reference the 'default_user'
from the distro configuration specified below
users:
- default

If this is set, 'root' will not be able to ssh in and they
will get a message to login instead as the default $user
disable_root: true

This will cause the set+update hostname module to not operate (if true)
preserve_hostname: false

If you use datasource_list array, keep array items in a single line.
If you use multi line array, ds-identify script won't read array items.
Example datasource config
datasource:
Ec2:
metadata_urls: ['blah.com']
timeout: 5 # (defaults to 50 seconds)
max_wait: 10 # (defaults to 120 seconds)

The modules that run in the 'init' stage
cloud_init_modules:
- seed_random
- bootcmd
- write_files

(continues on next page)

288 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

- growpart
- resizefs
- disk_setup
- mounts
- set_hostname
- update_hostname
- update_etc_hosts
- ca_certs
- rsyslog
- users_groups
- ssh

The modules that run in the 'config' stage
cloud_config_modules:
- wireguard
- snap
- ubuntu_autoinstall
- ssh_import_id
- keyboard
- locale
- set_passwords
- grub_dpkg
- apt_pipelining
- apt_configure
- ubuntu_pro
- ntp
- timezone
- disable_ec2_metadata
- runcmd
- byobu

The modules that run in the 'final' stage
cloud_final_modules:
- package_update_upgrade_install
- fan
- landscape
- lxd
- ubuntu_drivers
- write_files_deferred
- puppet
- chef
- ansible
- mcollective
- salt_minion
- reset_rmc
- scripts_vendor
- scripts_per_once
- scripts_per_boot
- scripts_per_instance
- scripts_user
- ssh_authkey_fingerprints
- keys_to_console

(continues on next page)

2.4. Reference 289

cloud-init, Release 24.1.3

(continued from previous page)

- install_hotplug
- phone_home
- final_message
- power_state_change

System and/or distro specific settings
(not accessible to handlers/transforms)
system_info:
This will affect which distro class gets used
distro: ubuntu
Default user name + that default users groups (if added/used)
default_user:
name: ubuntu
doas:
- permit nopass ubuntu

lock_passwd: True
gecos: Ubuntu
groups: [adm, cdrom, dip, lxd, sudo]
sudo: ["ALL=(ALL) NOPASSWD:ALL"]
shell: /bin/bash

network:
dhcp_client_priority: [dhclient, dhcpcd, udhcpc]
renderers: ['netplan', 'eni', 'sysconfig']
activators: ['netplan', 'eni', 'network-manager', 'networkd']

Automatically discover the best ntp_client
ntp_client: auto
Other config here will be given to the distro class and/or path classes
paths:
cloud_dir: /var/lib/cloud/
templates_dir: /etc/cloud/templates/

package_mirrors:
- arches: [i386, amd64]
failsafe:

primary: http://archive.ubuntu.com/ubuntu
security: http://security.ubuntu.com/ubuntu

search:
primary:
- http://%(ec2_region)s.ec2.archive.ubuntu.com/ubuntu/
- http://%(availability_zone)s.clouds.archive.ubuntu.com/ubuntu/
- http://%(region)s.clouds.archive.ubuntu.com/ubuntu/
security: []

- arches: [arm64, armel, armhf]
failsafe:

primary: http://ports.ubuntu.com/ubuntu-ports
security: http://ports.ubuntu.com/ubuntu-ports

search:
primary:
- http://%(ec2_region)s.ec2.ports.ubuntu.com/ubuntu-ports/
- http://%(availability_zone)s.clouds.ports.ubuntu.com/ubuntu-ports/
- http://%(region)s.clouds.ports.ubuntu.com/ubuntu-ports/
security: []

- arches: [default]

(continues on next page)

290 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

failsafe:
primary: http://ports.ubuntu.com/ubuntu-ports
security: http://ports.ubuntu.com/ubuntu-ports

ssh_svcname: ssh

configure where output will go
output:
init: "> /var/log/my-cloud-init.log"
config: [">> /tmp/foo.out", "> /tmp/foo.err"]
final:
output: "| tee /tmp/final.stdout | tee /tmp/bar.stdout"
error: "&1"

Set `true` to enable the stop searching for a datasource on boot.
manual_cache_clean: False

def_log_file and syslog_fix_perms work together
if
- logging is set to go to a log file 'L' both with and without syslog
- and 'L' does not exist
- and syslog is configured to write to 'L'
then 'L' will be initially created with root:root ownership (during
cloud-init), and then at cloud-config time (when syslog is available)
the syslog daemon will be unable to write to the file.
#
to remedy this situation, 'def_log_file' can be set to a filename
and syslog_fix_perms to a string containing "<user>:<group>"
def_log_file: /var/log/my-logging-file.log
syslog_fix_perms: syslog:root

2.4.11 Datasource dsname

Each datasource has an attribute called dsname. This may be used in the kernel commandline to override datasource
detection. The dsname on the kernel command line may be a case-insensitive match. See the mapping between data-
source module names and dsname in the table below.

2.4. Reference 291

cloud-init, Release 24.1.3

Datasource Module dsname
DataSourceRbxCloud.py RbxCloud
DataSourceConfigDrive.py ConfigDrive
DataSourceNoCloud.py NoCloud
DataSourceVultr.py Vultr
DataSourceEc2.py Ec2
DataSourceOracle.py Oracle
DataSourceMAAS.py MAAS
DataSourceDigitalOcean.py DigitalOcean
DataSourceNone.py None
DataSourceSmartOS.py Joyent
DataSourceHetzner.py Hetzner
DataSourceLXD.py LXD
DataSourceOpenNebula.py OpenNebula
DataSourceAzure.py Azure
DataSourceGCE.py GCE
DataSourceScaleway.py Scaleway
DataSourceAltCloud.py AltCloud
DataSourceCloudSigma.py CloudSigma
DataSourceBigstep.py Bigstep
DataSourceIBMCloud.py IBMCloud
DataSourceOVF.py OVF
DataSourceUpCloud.py UpCloud
DataSourceOpenStack.py OpenStack
DataSourceVMware.py VMware
DataSourceCloudStack.py CloudStack
DataSourceExoscale.py Exoscale
DataSourceAliYun.py AliYun
DataSourceNWCS.py NWCS
DataSourceAkamai.py Akamai

2.4.12 Performance analysis

Occasionally, instances don’t perform as well as expected, and so we provide a simple tool to inspect which operations
took the longest during boot and setup.

292 Chapter 2. Project and community

cloud-init, Release 24.1.3

cloud-init analyze

The cloud-init command has an analysis sub-command, analyze, which parses any cloud-init.log file into for-
matted and sorted events. This analysis reveals the most costly cloud-init operations and which configuration options
are responsible. These subcommands default to reading /var/log/cloud-init.log.

analyze show

Parse and organise cloud-init.log events by stage and include each sub-stage granularity with time delta reports.

$ cloud-init analyze show -i my-cloud-init.log

Example output:

-- Boot Record 01 --
The total time elapsed since completing an event is printed after the "@"
character.
The time the event takes is printed after the "+" character.

Starting stage: modules-config
|`->config-snap_config ran successfully @05.47700s +00.00100s
|`->config-ssh-import-id ran successfully @05.47800s +00.00200s
|`->config-locale ran successfully @05.48000s +00.00100s
...

analyze dump

Parse cloud-init.log into event records and return a list of dictionaries that can be consumed for other reporting
needs.

$ cloud-init analyze dump -i my-cloud-init.log

Example output:

[
{
"description": "running config modules",
"event_type": "start",
"name": "modules-config",
"origin": "cloudinit",
"timestamp": 1510807493.0

},...

2.4. Reference 293

cloud-init, Release 24.1.3

analyze blame

Parse cloud-init.log into event records and sort them based on the highest time cost for a quick assessment of areas
of cloud-init that may need improvement.

$ cloud-init analyze blame -i my-cloud-init.log

Example output:

-- Boot Record 11 --
00.01300s (modules-final/config-scripts-per-boot)
00.00400s (modules-final/config-final-message)
...

analyze boot

Make subprocess calls to the kernel in order to get relevant pre-cloud-init timestamps, such as the kernel start, kernel
finish boot, and cloud-init start.

$ cloud-init analyze boot

Example output:

-- Most Recent Boot Record --
Kernel Started at: 2019-06-13 15:59:55.809385
Kernel ended boot at: 2019-06-13 16:00:00.944740
Kernel time to boot (seconds): 5.135355
Cloud-init start: 2019-06-13 16:00:05.738396
Time between Kernel boot and Cloud-init start (seconds): 4.793656

2.4.13 Stable Release Updates (SRU)

Once upstream cloud-init has released a new version, the Ubuntu Server team backports cloud-init to previous releases
via a special procedure called a “Stable Release Update” (SRU). This helps ensure that new versions of cloud-init on
existing releases of Ubuntu will not experience breaking changes. Breaking changes are allowed when transitioning
from one Ubuntu series to the next (Focal -> Jammy).

SRU package version

Ubuntu cloud-init packages follow the SRU release version format.

SRU testing for cloud-init

The cloud-init project has a specific process it follows when validating a cloud-init SRU, which is documented in the
CloudinitUpdates wiki page.

An SRU test of cloud-init performs the following:

For each Ubuntu SRU, the Ubuntu Server team validates the new version of cloud-init on these platforms:
Amazon EC2, Azure, GCE, OpenStack, Oracle, Softlayer (IBM), LXD using the integration test
suite.

294 Chapter 2. Project and community

https://wiki.ubuntu.com/StableReleaseUpdates
https://github.com/canonical/ubuntu-maintainers-handbook/blob/main/VersionStrings.md#version-adding-a-change-in-ubuntu-as-a-stable-release-update
https://wiki.ubuntu.com/CloudinitUpdates

cloud-init, Release 24.1.3

Test process:

The integration test suite used for validation follows these steps:

• Install a pre-release version of cloud-init from the -proposed APT pocket (e.g., jammy-proposed).

• Upgrade cloud-init and attempt a clean run of cloud-init to assert that the new version works properly on the
specific platform and Ubuntu series.

• Check for tracebacks and errors in behaviour.

2.4.14 Breaking changes

This section provides guidance on specific breaking changes to cloud-init releases.

Note: These changes may not be present in all distributions of cloud-init as many operating system vendors patch out
breaking changes in cloud-init to ensure consistent behavior on their platform.

23.2-24.1 - Datasource identification

23.2
If the detected datasource_list contains a single datasource or that datasource plus None, automatically use
that datasource without checking to see if it is available. This allows for using datasources that don’t have a way
to be deterministically detected.

23.4
If the detected datasource_list contains a single datasource plus None, no longer automatically use that
datasource because None is a valid datasource that may be used if the primary datasource is not available.

24.1
ds-identify no longer automatically appends None to a datasource list with a single entry provided under /etc/
cloud. If None is desired as a fallback, it must be explicitly added to the customized datasource list.

24.1 - removed Ubuntu’s ordering dependency on snapd.seeded

In Ubuntu releases, cloud-init will no longer wait on snapd pre-seeding to run. If a user-provided script relies on a
snap, it must now be prefixed with snap wait system seed.loaded to ensure the snaps are ready for use. For
example, a cloud config that previously included:

runcmd:
- [snap, install, mc-installer]

Will now need to be:

runcmd:
- [snap, wait, system, seed.loaded]
- [snap, install, mc-installer]

2.4. Reference 295

cloud-init, Release 24.1.3

23.4 - added status code for recoverable error

Cloud-init return codes have been extended with a new error code (2), which will be returned when cloud-init experi-
ences an error that it can recover from. See this page which documents the change.

23.2 - kernel commandline

The ds= kernel commandline value is used to forcibly select a specific datasource in cloud-init. Prior to 23.2, this only
optionally selected the NoCloud datasource.

Anyone that previously had a matching ds=nocloud* in their kernel command line that did not want to use the NoCloud
datasource may experience broken behavior as a result of this change.

Workarounds include updating the kernel commandline and optionally configuring a datasource_list in /etc/
cloud/cloud.cfg.d/*.cfg.

2.4.15 Log and configuration files

Cloud-init uses the filesystem to read inputs and write outputs. These files are configuration and log files, respectively.
If other methods of debugging cloud-init fail, then digging into log files is your next step in debugging.

Cloud-init log files

Cloud-init’s early boot logic runs before system loggers are available or filesystems are mounted. Runtime logs and
early boot logs have different locations.

Runtime logs

While booting, cloud-init logs to two different files:

• /var/log/cloud-init-output.log: Captures the output from each stage of cloud-init when it runs.

• /var/log/cloud-init.log: Very detailed log with debugging output, describing each action taken.

Be aware that each time a system boots, new logs are appended to the files in /var/log. Therefore, the files may
contain information from more than one boot.

When reviewing these logs, look for errors or Python tracebacks.

Early boot logs

Prior to initialization, cloud-init runs early detection and enablement / disablement logic.

• /run/cloud-init/cloud-init-generator.log: On systemd systems, this log file describes early boot en-
ablement of cloud-init via the systemd generator. These logs are most useful if trying to figure out why cloud-init
did not run.

• /run/cloud-init/ds-identify.log: Contains logs about platform / datasource detection. These logs are
most useful if cloud-init did not identify the correct datasource (cloud) to run on.

296 Chapter 2. Project and community

cloud-init, Release 24.1.3

Configuration files

Cloud-init configuration files are provided in two places:

• /etc/cloud/cloud.cfg

• /etc/cloud/cloud.cfg.d/*.cfg

These files can define the modules that run during instance initialisation, the datasources to evaluate on boot, as well
as other settings.

See the configuration sources explanation and configuration reference pages for more details.

2.5 How to contribute to cloud-init

Thank you for wanting to help us improve cloud-init! There are a variety of ways you can contribute to this project,
including no-code and low-code options. This documentation will help orient you with our processes.

Please make sure that you read this guide before starting to contribute. It contains all the details you need to know to
give your contribution the best chance of being accepted.

Cloud-init is hosted and managed on GitHub. If you’re not familiar with how GitHub works, their quickstart documen-
tation provides an excellent introduction to all the tools and processes you’ll need to know.

2.5.1 Prerequisites

Before you can begin, you will need to:

• Read and agree to abide by our Code of Conduct.

• Sign the Canonical contributor license agreement. This grants us your permission to use your contributions in
the project.

• Create (or have) a GitHub account. We will refer to your GitHub username as GH_USER.

2.5.2 Getting help

We use IRC and have a dedicated #cloud-init channel where you can contact us for help and guidance. This link will
take you directly to our IRC channel on Libera.

2.5.3 Getting started

Find issues to work on

We track bugs and issues with GitHub issues, and use labels to categorise them. You can filter the list of open issues
by different labels according to what you’re interested in contributing.

For new contributors, we especially recommend using the “good first issue” label, and during Hacktoberfest we also
add the “hacktoberfest” label to smaller, self-contained issues suitable for participants.

If you would like to work on documentation specifically, you can also use the “documentation” label to filter the list of
issues.

2.5. How to contribute to cloud-init 297

https://github.com
https://docs.github.com/en/get-started/quickstart
https://docs.github.com/en/get-started/quickstart
https://ubuntu.com/community/code-of-conduct
https://ubuntu.com/legal/contributors
https://kiwiirc.com/nextclient/irc.libera.chat/cloud-init

cloud-init, Release 24.1.3

Claiming an issue

You can express your interest in an issue by posting a comment on it. You should only work on one open issue at a time
to avoid overloading yourself.

If you have not submitted a PR or commented with an updated status within a week of leaving your initial comment,
other contributors should consider the issue to be available for them to work on.

When you submit your proposed fix for an issue, including the issue number in the PR commit message will link the
issue to your proposed fix. This is the Fixes GH-0000 line in the template PR commit message.

Creating an issue

If you’ve spotted something that doesn’t already have an issue, you can always create one in GitHub.

For documentation issues, you can submit an issue in GitHub using the “Give feedback” button at the top of each
documentation page. It will automatically include the URL of the page you came from, so all you need to do is describe
the issue you’ve found.

No-code or low-code options

Contributing to our documentation is a great way to get involved with no or minimal coding experience.

If you can’t find a documentation issue you want to work on, you can always check out the documentation for yourself
and see what improvements you think can be made. This might be related to:

• spelling and grammar

• the user interface/experience (UI/UX)

• accessibility

• the CSS theming

• or even just highlighting things you found confusing or unclear

Feel free to contact us on IRC if you have other ideas about contributions you might want to make, such as blog posts,
guides, or tutorials.

Submit your first pull request

Follow these steps prior to submitting your first pull request to cloud-init:

Setup Git and GitHub appropriately

Understanding how to use Git and GitHub is a prerequisite for contributing to cloud-init. Please refer to the GitHub
quickstart documentation for more information.

298 Chapter 2. Project and community

https://cloudinit.readthedocs.io/en/latest/
https://kiwiirc.com/nextclient/irc.libera.chat/cloud-init
https://docs.github.com/en/get-started/quickstart
https://docs.github.com/en/get-started/quickstart

cloud-init, Release 24.1.3

Sign the CLA

To contribute to cloud-init, you must first sign the Canonical contributor license agreement (CLA).

If you have already signed it as an individual, your Launchpad username will be listed in the contributor-agreement-
canonical group. Unfortunately there is no easy way to check if the organisation or company you are working for has
signed it.

When you sign:

• ensure that you fill in the GitHub username field,

• when prompted for a ‘Project contact’ or ‘Canonical Project Manager’, enter ‘James Falcon’.

If your company has signed the CLA for you, please contact us to help in verifying which Launchpad/GitHub accounts
are associated with the company.

For any questions or help with the process, email James Falcon with the subject: “Cloud-init CLA”. You can also
contact user falcojr in the #cloud-init channel on the Libera IRC network.

Add your name to the CLA signers list

As part of your first PR to cloud-init, you should also add your GitHub username (alphabetically) to the in-repository
list that we use to track CLA signatures: tools/.github-cla-signers.

PR #344 and PR #345 are good examples of what this should look like in your pull request, though please do not use
a separate PR for this step.

Create a sandbox environment

It is very often helpful to create a safe and sandboxed environment to test your changes in while you work. If you are
not sure how to do this, check out our QEMU tutorial, which walks through this process step-by-step.

Format the code

Apply the black and isort formatting rules with tox:

tox -e do_format

Run unit tests

Run unit tests and lint/formatting checks with tox:

tox

2.5. How to contribute to cloud-init 299

https://ubuntu.com/legal/contributors
https://launchpad.net/%7Econtributor-agreement-canonical/+members
https://launchpad.net/%7Econtributor-agreement-canonical/+members
mailto:james.falcon@canonical.com
https://kiwiirc.com/nextclient/irc.libera.chat/cloud-init
https://github.com/canonical/cloud-init/blob/main/tools/.github-cla-signers
https://github.com/canonical/cloud-init/pull/344
https://github.com/canonical/cloud-init/pull/345
https://tox.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/

cloud-init, Release 24.1.3

Read our code review process

Once you have submitted your PR (if not earlier!) you will want to read the cloud-init Code Review Process, so you
can understand how your changes will end up in cloud-init’s codebase.

Code review process

Code is reviewed for acceptance by at least one core team member (later referred to as committers), but comments and
suggestions from others are encouraged and welcome.

Goals

This process aims to:

• provide timely and actionable feedback on every submission,

• make sure incoming PRs are handled efficiently, and

• get PRs accepted within a reasonable time frame.

Asking for help

Cloud-init contributors, community members and users are encouraged to ask for help if they need it. If you have
questions about the code review process, or need advice on an open PR, these are the available avenues:

• Open a PR, add “WIP:” to the title, and leave a comment on that PR

• join the #cloud-init channel on the Libera IRC network

• post on the #cloud-init Discourse topic

• send an email to the cloud-init mailing list:

cloud-init@lists.launchpad.net

These are listed in order of our preference, but please use whichever of them you are most comfortable with.

Role definitions

There are three roles involved in code reviews:

• Proposer

The person(s) submitting the PR

• Reviewer

A person who is reviewing the PR

• Committer

A cloud-init core developer (i.e., someone with permission to merge PRs into main)

300 Chapter 2. Project and community

https://kiwiirc.com/nextclient/irc.libera.chat/cloud-init
https://discourse.ubuntu.com/c/server/cloud-init/54

cloud-init, Release 24.1.3

PR acceptance conditions

Before a PR can be accepted and merged into main (“landed”), the following conditions must be met:

• The CLA must be signed by the proposer (unless the proposer is covered by an entity-level CLA signature),

• All required status checks must be passing,

• At least one “Approve” review must be given by a committer, and

• No “Request changes” reviews from a committer can be outstanding.

The following conditions should be met:

• Any Python functions/methods/classes have docstrings added/updated,

• Any changes to config module behaviour are captured in that module’s documentation,

• Any Python code added has corresponding unit tests, and

• No “Request changes” reviews from any reviewer are outstanding.

These conditions can be relaxed at the discretion of the committers on a case-by-case basis. For accountability, this
should not be the decision of a single committer, and the decision should be documented in comments on the PR.

To take a specific example, the cc_phone_home module had no tests at the time PR #237 was submitted, so the
proposer was not expected to write a full set of tests for their minor modification, but they were expected to update the
config module docs.

Non-committer reviews

Reviews from non-committer reviewers are always welcome. Please feel empowered to review PRs and leave your
thoughts and comments on any submitted PR, regardless of the proposer.

Much of the below process is written in terms of the committers. This does not mean that reviews should only come
from that group, but rather acknowledges that we are ultimately responsible for maintaining the standards of the code-
base. It is reasonable (and very welcome) for a reviewer to only examine part of a PR, but a committer must not merge
a PR without full scrutiny.

Opening phase

Proposer opens a PR

In this phase, the proposer opens a pull request and needs to ensure they meet the criteria laid out above. If they need
help understanding or meeting these criteria, then they can (and should!) ask for help.

CI runs automatically

• If CI fails:

The proposer is expected to fix CI failures. If they don’t understand the failures, they should comment on the
PR to ask for help (or use another way of Asking for help). If they don’t ask for help, the committers will assume
the proposer is working on addressing the failures.

• If CI passes:

Move on to the review phase.

2.5. How to contribute to cloud-init 301

https://ubuntu.com/legal/contributors
https://github.com/canonical/cloud-init/pull/237

cloud-init, Release 24.1.3

Review phase

In this phase, the proposer and the reviewers will work iteratively together to get the PR merged into the cloud-init
codebase.

There are three potential outcomes: merged, rejected permanently, and temporarily closed. The first two are covered
in this section; see the inactive pull requests section for details about temporary closure.

A committer is assigned

The committers assign a committer to the PR. This committer is expected to shepherd the PR to completion (and to
merge it, if that is the outcome reached).

They perform an initial review, and monitor the PR to ensure the proposer is receiving help if they need it. The
committers perform this assignment on a regular basis for any new PRs submitted.

Committer’s initial review

The assigned committer performs an initial review of the PR, resulting in one of the following.

Approve

If the submitted PR meets all of the PR acceptance conditions and passes code review, then the committer will squash
merge immediately.

Sometimes, a PR should not be merged immediately. The wip label will be applied to PRs for which this is true. Only
committers are able to apply labels to PRs, so anyone who thinks this label should be applied to a PR should request it
in a comment on the PR.

• The review process is DONE.

Approve (with nits)

A “nit” is understood to be something like a minor style issue or a spelling error, generally confined to a single line of
code.

If the proposer submits their PR with “Allow edits from maintainer” enabled, and the only changes the committer
requests are minor nits, the committer can push fixes for those nits and immediately squash merge.

If the committer does not wish to fix these nits but believes they should block a straightforward Approve, then their
review should be Needs Changes instead.

If a committer is unsure whether their requested change is a nit, they should not treat it as a nit.

If a proposer wants to opt-out of this, they should uncheck “Allow edits from maintainer” when submitting their PR.

• The review process is DONE.

302 Chapter 2. Project and community

cloud-init, Release 24.1.3

Outright rejection

The committer will close the PR with a message for the proposer to explain why.

This is reserved for cases where the proposed change is unfit for landing and there is no reasonable path forward. This
should only be used sparingly, as there are very few cases where proposals are completely unfit.

If a different approach to the same problem is planned, it should be submitted as a separate PR. The committer should
include this information in their message when the PR is closed.

• The review process is DONE.

Needs Changes

The committer will give the proposer clear feedback on what is needed for an Approve vote or, for more complex PRs,
what the next steps towards an Approve vote are.

The proposer can ask questions if they don’t understand, or disagree with, the committer’s review comments.

Once agreement has been reached, the proposer will address the review comments.

Once the review comments are addressed, CI will run. If CI fails, the proposer is expected to fix any CI failures. If
CI passes, the proposer should indicate that the PR is ready for re-review (by @ mentioning the assigned reviewer),
effectively moving back to the start of the Review phase.

Inactive pull requests

PRs will be temporarily closed if they have been waiting on proposer action for a certain amount of time without
activity. A PR will be marked as stale (with an explanatory comment) after 14 days of inactivity.

It will be closed after a further 7 days of inactivity.

These closes are not considered permanent, and the closing message should reflect this for the proposer. However, if
a PR is re-opened, it should effectively re-enter the Opening phase, as it may need some work done to get CI passing
again.

2.5.4 Contribute

Pull request checklist

Before any pull request can be accepted, remember to do the following:

• Make sure your GitHub username is added (alphabetically) to the in-repository list that we use to track CLA
signatures: tools/.github-cla-signers.

• Add or update any unit tests accordingly.

• Add or update any Integration testing (if applicable).

• Format code (using black and isort) with tox -e do_format.

• Ensure unit tests and/or linting checks pass using tox.

• Submit a PR against the main branch of the cloud-init repository.

2.5. How to contribute to cloud-init 303

https://github.com/canonical/cloud-init/blob/main/tools/.github-cla-signers

cloud-init, Release 24.1.3

Debugging and reporting

Logging

Cloud-init supports both local and remote logging configurable through multiple configurations:

• Python’s built-in logging configuration

• Cloud-init’s event reporting system

• The cloud-init rsyslog module

Python logging

Cloud-init uses the Python logging module, and can accept config for this module using the standard Python
fileConfig format. Cloud-init looks for config for the logging module under the logcfg key.

Note: The logging configuration is not YAML, it is Python fileConfig format, and is passed through directly to the
Python logging module. Please use the correct syntax for a multi-line string in YAML.

By default, cloud-init uses the logging configuration provided in /etc/cloud/cloud.cfg.d/05_logging.cfg. The
default Python logging configuration writes all cloud-init events with a priority of WARNING or higher to console, and
writes all events with a level of DEBUG or higher to /var/log/cloud-init.log and via syslog.

Python’s fileConfig format consists of sections with headings in the format [title] and key value pairs in each
section. Configuration for Python logging must contain the sections [loggers], [handlers], and [formatters],
which name the entities of their respective types that will be defined. The section name for each defined logger, handler
and formatter will start with its type, followed by an underscore (_) and the name of the entity. For example, if a logger
was specified with the name log01, config for the logger would be in the section [logger_log01].

Logger config entries contain basic logging setup. They may specify a list of handlers to send logging events to as well
as the lowest priority level of events to handle. A logger named root must be specified and its configuration (under
[logger_root]) must contain a level and a list of handlers. A level entry can be any of the following: DEBUG, INFO,
WARNING, ERROR, CRITICAL, or NOTSET. For the root logger the NOTSET option will allow all logging events to be
recorded.

Each configured handler must specify a class under Python’s logging package namespace. A handler may specify a
message formatter to use, a priority level, and arguments for the handler class. Common handlers are StreamHandler,
which handles stream redirects (i.e., logging to stderr), and FileHandler which outputs to a log file. The logging
module also supports logging over net sockets, over http, via smtp, and additional complex configurations. For full
details about the handlers available for Python logging, see the python logging handlers documentation.

Log messages are formatted using the logging.Formatter class, which is configured using formatter config en-
tities. A default format of %(message)s is given if no formatter configs are specified. Formatter config entities
accept a format string that supports variable replacements. These may also accept a datefmt string which may be
used to configure the timestamp used in the log messages. The format variables %(asctime)s, %(levelname)s and
%(message)s are commonly used and represent the timestamp, the priority level of the event and the event message.
For additional information on logging formatters see python logging formatters.

Note: By default, the format string used in the logging formatter are in Python’s old style %s form. The str.format()
and string.Template styles can also be used by using { or $ in place of % by setting the style parameter in formatter
config.

304 Chapter 2. Project and community

https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.html#formatter-objects

cloud-init, Release 24.1.3

A simple (but functional) Python logging configuration for cloud-init is below. It will log all messages of priority
DEBUG or higher to both stderr and /tmp/my.log using a StreamHandler and a FileHandler, using the default
format string %(message)s:

logcfg: |
[loggers]
keys=root,cloudinit
[handlers]
keys=ch,cf
[formatters]
keys=
[logger_root]
level=DEBUG
handlers=
[logger_cloudinit]
level=DEBUG
qualname=cloudinit
handlers=ch,cf
[handler_ch]
class=StreamHandler
level=DEBUG
args=(sys.stderr,)
[handler_cf]
class=FileHandler
level=DEBUG
args=('/tmp/my.log',)

For additional information about configuring Python’s logging module, please see the documentation for python logging
config.

Command output

Cloud-init can redirect its stdout and stderr based on config given under the output config key. The output of
any commands run by cloud-init and any user or vendor scripts provided will also be included here. The output key
accepts a dictionary for configuration. Output files may be specified individually for each stage (init, config, and
final), or a single key all may be used to specify output for all stages.

The output for each stage may be specified as a dictionary of output and error keys, for stdout and stderr respec-
tively, as a tuple with stdout first and stderr second, or as a single string to use for both. The strings passed to all
of these keys are handled by the system shell, so any form of redirection that can be used in bash is valid, including
piping cloud-init’s output to tee, or logger. If only a filename is provided, cloud-init will append its output to the file
as though >> was specified.

By default, cloud-init loads its output configuration from /etc/cloud/cloud.cfg.d/05_logging.cfg. The default
config directs both stdout and stderr from all cloud-init stages to /var/log/cloud-init-output.log. The
default config is given as:

output: { all: "| tee -a /var/log/cloud-init-output.log" }

For a more complex example, the following configuration would output the init stage to /var/log/cloud-init.out
and /var/log/cloud-init.err, for stdout and stderr respectively, replacing anything that was previously there.
For the config stage, it would pipe both stdout and stderr through tee -a /var/log/cloud-config.log. For
the final stage it would append the output of stdout and stderr to /var/log/cloud-final.out and /var/log/
cloud-final.err respectively.

2.5. How to contribute to cloud-init 305

https://docs.python.org/3/library/logging.config.html#configuration-file-format
https://docs.python.org/3/library/logging.config.html#configuration-file-format

cloud-init, Release 24.1.3

output:
init:

output: "> /var/log/cloud-init.out"
error: "> /var/log/cloud-init.err"

config: "tee -a /var/log/cloud-config.log"
final:

- ">> /var/log/cloud-final.out"
- "/var/log/cloud-final.err"

Event reporting

Cloud-init contains an eventing system that allows events to be emitted to a variety of destinations.

Three configurations are available for reporting events:

• webhook: POST to a web server.

• log: Write to the cloud-init log at configurable log level.

• stdout: Print to stdout.

The default configuration is to emit events to the cloud-init log file at DEBUG level.

Event reporting can be configured using the reporting key in cloud-config user data.

Configuration

webhook

reporting:
<user-defined name>:
type: webhook
endpoint: <url>
timeout: <timeout in seconds>
retries: <number of retries>
consumer_key: <OAuth consumer key>
token_key: <OAuth token key>
token_secret: <OAuth token secret>
consumer_secret: <OAuth consumer secret>

endpoint is the only additional required key when specifying type: webhook.

log

reporting:
<user-defined name>:
type: log
level: <DEBUG|INFO|WARN|ERROR|FATAL>

level is optional and defaults to “DEBUG”.

306 Chapter 2. Project and community

cloud-init, Release 24.1.3

print

reporting:
<user-defined name>:
type: print

Example

The follow example shows configuration for all three sources:

#cloud-config
reporting:
webserver:
type: webhook
endpoint: "http://10.0.0.1:55555/asdf"
timeout: 5
retries: 3
consumer_key: <consumer_key>
token_key: <token_key>
token_secret: <token_secret>
consumer_secret: <consumer_secret>

info_log:
type: log
level: WARN

stdout:
type: print

rsyslog module

Cloud-init’s cc_rsyslog module allows for fully customizable rsyslog configuration under the rsyslog config key.
The simplest way to use the rsyslog module is by specifying remote servers under the remotes key in rsyslog
config. The remotes key takes a dictionary where each key represents the name of an rsyslog server and each value
is the configuration for that server. The format for server config is:

• optional filter for log messages (defaults to *.*)

• optional leading @ or @@, indicating UDP and TCP respectively (defaults to @, for UDP)

• IPv4 or IPv6 hostname or address. IPv6 addresses must be in [::1] format (e.g., @[fd00::1]:514)

• optional port number (defaults to 514)

For example, to send logging to an rsyslog server named log_serv with address 10.0.4.1, using port number 514,
over UDP, with all log messages enabled one could use either of the following.

With all options specified:

rsyslog:
remotes:

log_serv: "*.* @10.0.4.1:514"

With defaults used:

2.5. How to contribute to cloud-init 307

cloud-init, Release 24.1.3

rsyslog:
remotes:

log_serv: "10.0.4.1"

For more information on rsyslog configuration, see our module reference page.

Internal Files: data

Cloud-init uses the filesystem to store its own internal state. These files are not intended for user consumption, but may
prove helpful to debug unexpected cloud-init failures.

Data files

Inside the /var/lib/cloud/ directory there are two important subdirectories:

instance

The /var/lib/cloud/instance directory is a symbolic link that points to the most recently used instance-id
directory. This folder contains the information cloud-init received from datasources, including vendor and user
data. This can help to determine that the correct data was passed.

It also contains the datasource file that contains the full information about which datasource was identified and used
to set up the system.

Finally, the boot-finished file is the last thing that cloud-init creates.

data

The /var/lib/cloud/data directory contains information related to the previous boot:

• instance-id: ID of the instance as discovered by cloud-init. Changing this file has no effect.

• result.json: JSON file showing both the datasource used to set up the instance, and whether any errors
occurred.

• status.json: JSON file showing the datasource used, a breakdown of all four stages, whether any errors
occurred, and the start and stop times of the stages.

2.6 Contribute to the code

For a run-through of the entire process, the following pages will be your best starting point:

• Find issues to work on

• Build your first pull request

• Our code review process

On the rest of this page you’ll find the key resources you’ll need to start contributing to the cloud-init codebase.

308 Chapter 2. Project and community

cloud-init, Release 24.1.3

2.6.1 Testing

Submissions to cloud-init must include testing. Unit testing and integration testing are integral parts of contributing
code.

Testing

Cloud-init has both unit tests and integration tests. Unit tests can be found at tests/unittests. Integration tests
can be found at tests/integration_tests. Documentation specifically for integration tests can be found on the
Integration testing page, but the guidelines specified below apply to both types of tests.

Cloud-init uses pytest to run its tests, and has tests written both as unittest.TestCase sub-classes and as un-
subclassed pytest tests.

Guidelines

The following guidelines should be followed.

Test layout

• For ease of organisation and greater accessibility for developers unfamiliar with pytest, all cloud-init unit
tests must be contained within test classes. In other words, module-level test functions should not be used.

• Since all tests are contained within classes, it is acceptable to mix TestCase test classes and pytest test classes
within the same test file.

– These can be easily distinguished by their definition: pytest classes will not use inheritance at all (e.g.,
TestGetPackageMirrorInfo), whereas TestCase classes will subclass (indirectly) from TestCase (e.g.,
TestPrependBaseCommands).

• Unit tests and integration tests are located under cloud-init/tests.

– For consistency, unit test files should have a matching name and directory location under tests/
unittests.

– E.g., the expected test file for code in cloudinit/path/to/file.py is tests/unittests/path/to/
test_file.py.

pytest tests

• pytest test classes should use pytest fixtures to share functionality instead of inheritance.

• pytest tests should use bare assert statements, to take advantage of pytest’s assertion introspection.

2.6. Contribute to the code 309

https://docs.pytest.org/
https://github.com/canonical/cloud-init/blob/42f69f410ab8850c02b1f53dd67c132aa8ef64f5/cloudinit/distros/tests/test_init.py#L15
https://github.com/canonical/cloud-init/blob/fbcb224bc12495ba200ab107246349d802c5d8e6/cloudinit/tests/test_subp.py#L20
https://docs.pytest.org/en/latest/fixture.html
https://docs.pytest.org/en/latest/assert.html

cloud-init, Release 24.1.3

pytest version “gotchas”

As we still support Ubuntu 18.04 (Bionic Beaver), we can only use pytest features that are available in v3.3.2. This
is an inexhaustive list of ways in which this may catch you out:

• Only the following built-in fixtures are available1:

– cache

– capfd

– capfdbinary

– caplog

– capsys

– capsysbinary

– doctest_namespace

– monkeypatch

– pytestconfig

– record_xml_property

– recwarn

– tmpdir_factory

– tmpdir

Mocking and assertions

• Variables/parameter names for Mock or MagicMock instances should start with m_ to clearly distinguish them
from non-mock variables. For example, m_readurl (which would be a mock for readurl).

• The assert_* methods that are available on Mock and MagicMock objects should be avoided, as typos in these
method names may not raise AttributeError (and so can cause tests to silently pass).

– An important exception: if a Mock is autospecced then misspelled assertion methods will raise an
AttributeError, so these assertion methods may be used on autospecced Mock objects.

• For a non-autospecced Mock, these substitutions can be used (m is assumed to be a Mock):

– m.assert_any_call(*args, **kwargs) => assert mock.call(*args, **kwargs) in m.
call_args_list

– m.assert_called() => assert 0 != m.call_count

– m.assert_called_once() => assert 1 == m.call_count

– m.assert_called_once_with(*args, **kwargs) => assert [mock.call(*args, **kwargs)]
== m.call_args_list

– m.assert_called_with(*args, **kwargs) => assert mock.call(*args, **kwargs) == m.
call_args_list[-1]

1 This list of fixtures (with markup) can be reproduced by running:

python3 -m pytest --fixtures -q | grep "^[^ -]" | grep -v 'no tests ran in' | sort | sed 's/ \[session scope\
→˓]//g;s/.*/* ``\0``/g'

in an ubuntu lxd container with python3-pytest installed.

310 Chapter 2. Project and community

https://docs.python.org/3.8/library/unittest.mock.html#autospeccing

cloud-init, Release 24.1.3

– m.assert_has_calls(call_list, any_order=True) => for call in call_list: assert
call in m.call_args_list

∗ m.assert_has_calls(...) and m.assert_has_calls(..., any_order=False) are not easily
replicated in a single statement, so their use when appropriate is acceptable.

– m.assert_not_called() => assert 0 == m.call_count

• When there are multiple patch calls in a test file for the module it is testing, it may be desirable to capture the
shared string prefix for these patch calls in a module-level variable. If used, such variables should be named
M_PATH or, for datasource tests, DS_PATH.

Test argument ordering

• Test arguments should be ordered as follows:

– mock.patch arguments. When used as a decorator, mock.patch partially applies its generated Mock
object as the first argument, so these arguments must go first.

– pytest.mark.parametrize arguments, in the order specified to the parametrize decorator. These
arguments are also provided by a decorator, so it’s natural that they sit next to the mock.patch arguments.

– Fixture arguments, alphabetically. These are not provided by a decorator, so they are last, and their order
has no defined meaning, so we default to alphabetical.

• It follows from this ordering of test arguments (so that we retain the property that arguments left-to-right corre-
spond to decorators bottom-to-top) that test decorators should be ordered as follows:

– pytest.mark.parametrize

– mock.patch

Integration testing

Overview

Integration tests are written using pytest and are located at tests/integration_tests. General design principles
laid out in Testing should be followed for integration tests.

Setup is accomplished via a set of fixtures located in tests/integration_tests/conftest.py.

Test definition

Tests are defined like any other pytest test. The user_data mark can be used to supply the cloud-config user data.
Platform-specific marks can be used to limit tests to particular platforms. The client fixture can be used to interact
with the launched test instance.

See Examples section for examples.

2.6. Contribute to the code 311

cloud-init, Release 24.1.3

Test execution

Test execution happens via pytest. A tox definition exists to run integration tests. To run all integration tests, you
would run:

$ tox -e integration-tests

pytest arguments may also be passed. For example:

$ tox -e integration-tests tests/integration_tests/modules/test_combined.py

Configuration

All possible configuration values are defined in tests/integration_tests/integration_settings.py. Defaults can be over-
ridden by supplying values in tests/integration_tests/user_settings.py or by providing an environment
variable of the same name prepended with CLOUD_INIT_. For example, to set the PLATFORM setting:

CLOUD_INIT_PLATFORM='ec2' pytest tests/integration_tests/

Cloud interaction

Cloud interaction happens via the pycloudlib library. In order to run integration tests, pycloudlib must first be config-
ured.

For a minimal setup using LXD, write the following to ~/.config/pycloudlib.toml:

[lxd]

Image selection

Each integration testing run uses a single image as its basis. This image is configured using the OS_IMAGE variable;
see Configuration for details of how configuration works.

OS_IMAGE can take two types of value: an Ubuntu series name (e.g. “focal”), or an image specification. If an Ubuntu
series name is given, then the most recent image for that series on the target cloud will be used. For other use cases, an
image specification is used.

In its simplest form, an image specification can simply be a cloud’s image ID (e.g., “ami-deadbeef”, “ubuntu:focal”).
In this case, the identified image will be used as the basis for this testing run.

This has a drawback, however. As we do not know what OS or release is within the image, the integration testing
framework will run all tests against the image in question. If it’s a RHEL8 image, then we would expect Ubuntu-
specific tests to fail (and vice versa).

To address this, a full image specification can be given. This is of the form: <image_id>[::<os>[::<release>]]
where image_id is a cloud’s image ID, os is the OS name, and release is the OS release name. So, for ex-
ample, Ubuntu 18.04 (Bionic Beaver) on LXD is ubuntu:bionic::ubuntu::bionic or RHEL8 on Amazon is
ami-justanexample::rhel::8. When a full specification is given, only tests which are intended for use on that
OS and release will be executed.

312 Chapter 2. Project and community

https://github.com/canonical/cloud-init/blob/main/tests/integration_tests/integration_settings.py
https://pycloudlib.readthedocs.io/en/latest/index.html
https://pycloudlib.readthedocs.io/en/latest/configuration.html#configuration
https://pycloudlib.readthedocs.io/en/latest/configuration.html#configuration

cloud-init, Release 24.1.3

Image setup

Image setup occurs once when a test session begins and is implemented via fixture. Image setup roughly follows these
steps:

• Launch an instance on the specified test platform.

• Install the version of cloud-init under test.

• Run cloud-init clean on the instance so subsequent boots resemble “out of the box” behaviour.

• Take a snapshot of the instance to be used as a new image from which new instances can be launched.

Test setup

Test setup occurs between image setup and test execution. Test setup is implemented via one of the client fixtures.
When a client fixture is used, a test instance from which to run tests is launched prior to test execution, and then torn
down after.

Continuous integration

A subset of the integration tests are run when a pull request is submitted on GitHub. The tests run on these continuous
integration (CI) runs are given a pytest mark:

@pytest.mark.ci

Most new tests should not use this mark, so be aware that having a successful CI run does not necessarily mean that
your test passed successfully.

Fixtures

Integration tests rely heavily on fixtures to do initial test setup. One or more of these fixtures will be used in almost
every integration test.

Details such as the cloud platform or initial image to use are determined via what is specified in the Configuration.

client

The client fixture should be used for most test cases. It ensures:

• All setup performed by session_cloud and setup_image.

• Pytest marks used during instance creation are obtained and applied.

• The test instance is launched.

• Test failure status is determined after test execution.

• Logs are collected (if configured) after test execution.

• The test instance is torn down after test execution.

module_client and class_client fixtures also exist for the purpose of running multiple tests against a single
launched instance. They provide the exact same functionality as client, but are scoped to the module or class re-
spectively.

2.6. Contribute to the code 313

https://github.com/canonical/cloud-init/blob/af7eb1deab12c7208853c5d18b55228e0ba29c4d/tests/integration_tests/conftest.py#L220-L224

cloud-init, Release 24.1.3

session_cloud

The session_cloud session-scoped fixture will provide an IntegrationCloud instance for the currently configured
cloud. The fixture also ensures that any custom cloud session cleanup is performed.

setup_image

The setup_image session-scope fixture will create a new image to launch all further cloud instances during this test
run. It ensures:

• A cloud instance is launched on the configured platform.

• The version of cloud-init under test is installed on the instance.

• cloud-init clean --logs is run on the instance.

• A snapshot of the instance is taken to be used as the basis for future instance launches.

• The originally launched instance is torn down.

• The custom created image is torn down after all tests finish.

Examples

A simple test case using the client fixture:

USER_DATA = """\
#cloud-config
bootcmd:
- echo 'hello!' > /var/tmp/hello.txt
"""

@pytest.mark.user_data(USER_DATA)
def test_bootcmd(client):

log = client.read_from_file("/var/log/cloud-init.log")
assert "Shellified 1 commands." in log
assert client.execute('cat /var/tmp/hello.txt').strip() == "hello!"

Customizing the launch arguments before launching an instance manually:

def test_launch(session_cloud: IntegrationCloud, setup_image):
with session_cloud.launch(launch_kwargs={"wait": False}) as client:

client.instance.wait()
assert client.execute("echo hello world").strip() == "hello world"

• Unit testing overview and design principles

• Integration testing

314 Chapter 2. Project and community

https://github.com/canonical/cloud-init/blob/af7eb1deab12c7208853c5d18b55228e0ba29c4d/tests/integration_tests/clouds.py#L102

cloud-init, Release 24.1.3

2.6.2 Popular contributions

Module creation

Much of cloud-init’s functionality is provided by modules. All modules follow a similar layout in order to provide
consistent execution and documentation. Use the example provided here to create a new module.

Example

This file is part of cloud-init. See LICENSE file for license information.
"""Example Module: Shows how to create a module"""

import logging
from cloudinit.cloud import Cloud
from cloudinit.config import Config
from cloudinit.config.schema import MetaSchema, get_meta_doc
from cloudinit.distros import ALL_DISTROS
from cloudinit.settings import PER_INSTANCE

MODULE_DESCRIPTION = """\
Description that will be used in module documentation.

This will likely take multiple lines.
"""

LOG = logging.getLogger(__name__)

meta: MetaSchema = {
"id": "cc_example",
"name": "Example Module",
"title": "Shows how to create a module",
"description": MODULE_DESCRIPTION,
"distros": [ALL_DISTROS],
"frequency": PER_INSTANCE,
"activate_by_schema_keys": ["example_key, example_other_key"],
"examples": [

"example_key: example_value",
"example_other_key: ['value', 2]",

],
}

__doc__ = get_meta_doc(meta)

def handle(
name: str, cfg: Config, cloud: Cloud, args: list

) -> None:
LOG.debug(f"Hi from module {name}")

2.6. Contribute to the code 315

cloud-init, Release 24.1.3

Guidelines

• Create a new module in the cloudinit/config directory with a cc_ prefix.

• Your module must include a handle function. The arguments are:

– name: The module name specified in the configuration.

– cfg: A configuration object that is the result of the merging of cloud-config configuration with any
datasource-provided configuration.

– cloud: A cloud object that can be used to access various datasource and paths for the given distro and data
provided by the various datasource instance types.

– args: An argument list. This is usually empty and is only populated if the module is called independently
from the command line or if the module definition in /etc/cloud/cloud.cfg[.d] has been modified to
pass arguments to this module.

• If your module introduces any new cloud-config keys, you must provide a schema definition in cloud-init-
schema.json.

• The meta variable must exist and be of type MetaSchema.

– id: The module ID. In most cases this will be the filename without the .py extension.

– distros: Defines the list of supported distros. It can contain any of the values (not keys) defined in the
OSFAMILIES map or [ALL_DISTROS] if there is no distro restriction.

– frequency: Defines how often module runs. It must be one of:

∗ PER_ALWAYS: Runs on every boot.

∗ ONCE: Runs only on first boot.

∗ PER_INSTANCE: Runs once per instance. When exactly this happens is dependent on the datasource,
but may triggered any time there would be a significant change to the instance metadata. An example
could be an instance being moved to a different subnet.

– activate_by_schema_keys: Optional list of cloud-config keys that will activate this module. When
this list not empty, the config module will be skipped unless one of the activate_by_schema_keys are
present in merged cloud-config instance-data.

– examples: Lists examples of any cloud-config keys this module reacts to. These examples will be rendered
in the module reference documentation and will automatically be tested against the defined schema during
testing.

• __doc__ = get_meta_doc(meta) is necessary to provide proper module documentation.

Module execution

In order for a module to be run, it must be defined in a module run section in /etc/cloud/cloud.cfg or /etc/cloud/
cloud.cfg.d on the launched instance. The three module sections are cloud_init_modules, cloud_config_modules,
and cloud_final_modules, corresponding to the Network, Config, and Final boot stages respectively.

Add your module to cloud.cfg.tmpl under the appropriate module section. Each module gets run in the order listed,
so ensure your module is defined in the correct location based on dependencies. If your module has no particular
dependencies or is not necessary for a later boot stage, it should be placed in the cloud_final_modules section
before the final-message module.

316 Chapter 2. Project and community

https://github.com/canonical/cloud-init/blob/main/cloudinit/config/schemas/versions.schema.cloud-config.json
https://github.com/canonical/cloud-init/blob/main/cloudinit/config/schemas/versions.schema.cloud-config.json
https://github.com/canonical/cloud-init/blob/3bcffacb216d683241cf955e4f7f3e89431c1491/cloudinit/config/schema.py#L58
https://github.com/canonical/cloud-init/blob/3bcffacb216d683241cf955e4f7f3e89431c1491/cloudinit/distros/__init__.py#L35
https://github.com/canonical/cloud-init/blob/b4746b6aed7660510071395e70b2d6233fbdc3ab/config/cloud.cfg.tmpl#L70
https://github.com/canonical/cloud-init/blob/b4746b6aed7660510071395e70b2d6233fbdc3ab/config/cloud.cfg.tmpl#L101
https://github.com/canonical/cloud-init/blob/b4746b6aed7660510071395e70b2d6233fbdc3ab/config/cloud.cfg.tmpl#L144
https://github.com/canonical/cloud-init/blob/main/config/cloud.cfg.tmpl

cloud-init, Release 24.1.3

Supporting your cloud or platform

The upstream cloud-init project regularly accepts code contributions for new platforms that wish to support cloud-init.

Ways to add platform support

To add cloud-init support for a new platform, there are two possible approaches:

1. Provide platform compatibility with one of the existing datasource definitions, such as nocloud via DatasourceN-
oCloud.py. Several platforms, including Libvirt and Proxmox use this approach.

2. Add a new datasource definition to upstream cloud-init. This provides tighter integration, a better debugging
experience, and more control and flexibility of cloud-init’s interaction with the datasource. This option is more
sensible for clouds that have a unique architecture.

Platform requirements

There are some technical and logistical prerequisites that must be met for cloud-init support.

Technical requirements

A cloud needs to be able to identify itself to cloud-init at runtime, and that the cloud be able to provide configuration
to the instance.

A mechanism for self-identification

Each cloud platform must positively identify itself to the guest. This allows the guest to make educated decisions based
on the platform on which it is running. On the x86 and arm64 architectures, many clouds identify themselves through
DMI data. For example, Oracle’s public cloud provides the string 'OracleCloud.com' in the DMI chassis-asset field.

Cloud-init-enabled images produce a log file with details about the platform. Reading through this log in /run/
cloud-init/ds-identify.log may provide the information needed to uniquely identify the platform. If the log is
not present, one can generate the log by running ds-identify manually.

The mechanism used to identify the platform will be required for ds-identify and the datasource module sections
below.

A mechanism for cloud-init to retrieve configuration

There are different methods that cloud-init can use to retrieve cloud-configuration for configuring the instance. The
most common method is a webserver providing configuration over a link-local network.

2.6. Contribute to the code 317

https://cloudinit.readthedocs.io/en/latest/reference/datasources/nocloud.html
https://github.com/canonical/cloud-init/blob/main/cloudinit/sources/DataSourceNoCloud.py
https://github.com/canonical/cloud-init/blob/main/cloudinit/sources/DataSourceNoCloud.py
https://github.com/virt-manager/virt-manager/blob/main/man/virt-install.rst#--cloud-init
https://pve.proxmox.com/wiki/Cloud-Init_Support
https://www.dmtf.org/sites/default/files/standards/documents/DSP0005.pdf

cloud-init, Release 24.1.3

Logistical requirements

As with any open source project, multiple logistal requirements exist.

Testing access

A platform that isn’t available for testing cannot be independently validated. You will need to provide some means for
community members and upstream developers to test and verify this platform. Code that cannot be used cannot be
supported.

Maintainer support

A point of contact is required who can answer questions and occasionally provide testing or maintenance support.
Maintainership is relatively informal, but there is an expectation that from time to time upstream may need to contact
a the maintainer with inquiries. Datasources that appear to be unmaintained and/or unused may be considered for
eventual removal.

Adding cloud-init support

There are multiple ways to provide user data, metadata, and vendor data, and each cloud solution prefers its own way. A
datasource abstract base class defines a single interface to interact with the different clouds. Each cloud implementation
must inherit from this base class to use this shared functionality and interface. See cloud-init/sources/__init__.
py to see this class.

If you are interested in adding a new datasource for your cloud platform you will need to do all of the following:

Add datasource module cloudinit/sources/DataSource<CloudPlatform>.py

We suggest you start by copying one of the simpler datasources such as DataSourceHetzner.

Re-run datasource detection

While developing a new datasource it may be helpful to manually run datasource detection without rebooting the
system.

To re-run datasource detection, you must first force ds-identify to re-run, then clean up any logs, and finally, re-run
cloud-init:

sudo DI_LOG=stderr /usr/lib/cloud-init/ds-identify --force
sudo cloud-init clean --logs
sudo cloud-init init --local
sudo cloud-init init

318 Chapter 2. Project and community

cloud-init, Release 24.1.3

Add tests for datasource module

Add a new file with some tests for the module to cloudinit/sources/test_<yourplatform>.py. For example,
see cloudinit/sources/tests/test_oracle.py

Update ds-identify

In systemd systems, ds-identify is used to detect which datasource should be enabled, or if cloud-init should
run at all. You’ll need to make changes to tools/ds-identify.

Add tests for ds-identify

Add relevant tests in a new class to tests/unittests/test_ds_identify.py. You can use TestOracle as an
example.

Add your datasource name to the built-in list of datasources

Add your datasource module name to the end of the datasource_list entry in cloudinit/settings.py.

Add your cloud platform to apport collection prompts

Update the list of cloud platforms in cloudinit/apport.py. This list will be provided to the user who invokes
ubuntu-bug cloud-init.

Enable datasource by default in Ubuntu packaging branches

Ubuntu packaging branches contain a template file, config/cloud.cfg.tmpl, which ultimately sets the default
datasource_list that is installed by distros that use the upstream packaging configuration.

Add documentation for your datasource

You should add a new file in doc/rtd/reference/datasources/<cloudplatform>.rst and reference it in doc/
rtd/reference/datasources.rst

Benefits of including your datasource in upstream cloud-init

Datasources included in upstream cloud-init benefit from ongoing maintenance, compatibility with the rest of the
codebase, and security fixes by the upstream development team.

The two most popular contributions we receive are new cloud config modules and new datasources; these pages will
provide instructions on how to create them.

Note that any new modules should use underscores in any new config options and not hyphens (e.g. new_option and
not new-option).

2.6. Contribute to the code 319

cloud-init, Release 24.1.3

2.6.3 Code style and design

We generally adhere to PEP 8, and this is enforced by our use of black, isort and ruff.

Python support

Cloud-init upstream currently supports Python 3.6 and above.

Cloud-init upstream will stay compatible with a particular Python version for 6 years after release. After 6 years, we
will stop testing upstream changes against the unsupported version of Python and may introduce breaking changes.
This policy may change as needed.

The following table lists the cloud-init versions in which the minimum Python version changed:

Cloud-init version Python version
22.1 3.6+
20.3 3.5+
19.4 2.7+

Type annotations

The cloud-init codebase uses Python’s annotation support for storing type annotations in the style specified by PEP-484
and PEP-526. Their use in the codebase is encouraged.

2.6.4 Other resources

Directory layout

/var/lib/cloud

The main directory containing the cloud-init-specific subdirectories. It is typically located at /var/lib but there are
certain configuration scenarios where this can be changed.

.../data/

This directory contains information about instance IDs, datasources and hostnames of the previous and current instance
if they are different. These can be examined as needed to determine any information related to a previous boot (if
applicable).

.../handlers/

Custom part-handlers code is written out here. Files that end up here are written out within the scheme of
part-handler-XYZ where XYZ is the handler number (the first handler found starts at 0).

320 Chapter 2. Project and community

https://peps.python.org/pep-0008/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0526/

cloud-init, Release 24.1.3

.../instance

A symlink to the current instances/ subdirectory, which points to the currently active instance. Note that the active
instance depends on the loaded datasource.

.../instances/

All instances that were created using this image end up with instance identifier subdirectories (with corresponding data
for each instance). The currently active instance will be symlinked to the instance symlink file defined previously.

.../scripts/

Scripts in one of these subdirectories are downloaded/created by the corresponding part-handler.

.../seed/

Contains seeded data files: meta-data, network-config, user-data, vendor-data.

.../sem/

Cloud-init has a concept of a module semaphore, which consists of the module name and its frequency. These files
are used to ensure a module is only run “per-once”, “per-instance”, or “per-always”. This folder contains semaphore
files which are only supposed to run “per-once” (not tied to the instance ID).

• Explanation of the directory structure

Feature flags

Feature flags are used as a way to easily toggle configuration at build time. They are provided to accommodate feature
deprecation and downstream configuration changes.

Currently used upstream values for feature flags are set in cloudinit/features.py. Overrides to these values should
be patched directly (e.g., via quilt patch) by downstreams.

Each flag should include a short comment regarding the reason for the flag and intended lifetime.

Tests are required for new feature flags, and tests must verify all valid states of a flag, not just the default state.

cloudinit.features.ALLOW_EC2_MIRRORS_ON_NON_AWS_INSTANCE_TYPES = False

When configuring apt mirrors, if ALLOW_EC2_MIRRORS_ON_NON_AWS_INSTANCE_TYPES is True cloud-init
will detect that a datasource’s availability_zone property looks like an EC2 availability zone and set the
ec2_region variable when generating mirror URLs; this can lead to incorrect mirrors being configured in
clouds whose AZs follow EC2’s naming pattern.

As of 20.3, ALLOW_EC2_MIRRORS_ON_NON_AWS_INSTANCE_TYPES is False so we no longer include
ec2_region in mirror determination on non-AWS cloud platforms.

If the old behavior is desired, users can provide the appropriate mirrors via apt: directives in cloud-config.

2.6. Contribute to the code 321

cloud-init, Release 24.1.3

cloudinit.features.APT_DEB822_SOURCE_LIST_FILE = True

On Debian and Ubuntu systems, cc_apt_configure will write a deb822 compatible
/etc/apt/sources.list.d/(debian|ubuntu).sources file. When set False, continue to write /etc/apt/sources.list
directly.

cloudinit.features.ERROR_ON_USER_DATA_FAILURE = True

If there is a failure in obtaining user data (i.e., #include or decompress fails) and
ERROR_ON_USER_DATA_FAILURE is False, cloud-init will log a warning and proceed. If it is True,
cloud-init will instead raise an exception.

As of 20.3, ERROR_ON_USER_DATA_FAILURE is True.

(This flag can be removed after Focal is no longer supported.)

cloudinit.features.EXPIRE_APPLIES_TO_HASHED_USERS = True

If EXPIRE_APPLIES_TO_HASHED_USERS is True, then when expire is set true in cc_set_passwords, hashed
passwords will be expired. Previous to 22.3, only non-hashed passwords were expired.

(This flag can be removed after Jammy is no longer supported.)

cloudinit.features.NETPLAN_CONFIG_ROOT_READ_ONLY = True

If NETPLAN_CONFIG_ROOT_READ_ONLY is True, then netplan configuration will be written as a single root read-
only file /etc/netplan/50-cloud-init.yaml. This prevents wifi passwords in network v2 configuration from being
world-readable. Prior to 23.1, netplan configuration is world-readable.

(This flag can be removed after Jammy is no longer supported.)

cloudinit.features.NOCLOUD_SEED_URL_APPEND_FORWARD_SLASH = True

Append a forward slash ‘/’ if NoCloud seedurl does not end with either a querystring or forward slash. Prior to
23.1, nocloud seedurl would be used unaltered, appending meta-data, user-data and vendor-data to without URL
path separators.

(This flag can be removed when Jammy is no longer supported.)

cloudinit.features.get_features()→ Dict[str, bool]
Return a dict of applicable features/overrides and their values.

2.7 Contribute to our docs

2.7.1 Documentation style guide

Language

Where possible, text should be written in UK English. However, discretion and common sense can both be applied.
For example, where text refers to code elements that exist in US English, the spelling of these elements should not be
changed to UK English.

Try to be concise and to the point in your writing. It is acceptable to link to official documentation elsewhere rather
than repeating content. It’s also good practice not to assume that your reader has the same level of knowledge as you,
so if you’re covering a new or complicated topic, then providing contextual links to help the reader is encouraged.

Feel free to include a “Further reading” section at the end of a page if you have additional resources an interested reader
might find helpful.

322 Chapter 2. Project and community

cloud-init, Release 24.1.3

Headings

In reStructuredText, headings are denoted using symbols to underline the text. The headings used across the documen-
tation use the following hierarchy, which is borrowed from the Python style guide:

• #####: Top level header (reserved for the main index page)

• *****: Title header (used once at the top of a new page)

• =====: Section headers

• -----: Subsection headers

• ^^^^^: Sub-subsection headers

• """"": Paragraphs

The length of the underline must be at least as long as the title itself.

Ensure that you do not skip header levels when creating your document structure, i.e., that a section is followed by a
subsection, and not a sub-subsection.

Line length

Please keep the line lengths to a maximum of 79 characters. This ensures that the pages and tables do not get so wide
that side scrolling is required.

Blank spaces at the ends of lines must also be removed, otherwise the tox build checks will fail (it will warn you about
trailing whitespace).

Anchor labels

Adding an anchor label at the top of the page allows for the page to be referenced by other pages. For example for the
FAQ page this would be:

.. _faq:

FAQ

When the reference is used in a document, the displayed text will be that of the next heading immediately following the
label (so, FAQ in this example), unless specifically overridden.

If you use labels within a page to refer, for example, to a subsection, use a label that follows the format:
[pagelabel]-[Section] e.g., for this “Anchor labels” section, something like _docs-Anchor: or _docs-Label:.
Using a consistent style will aid greatly when referencing from other pages.

Links

To aid in documentation maintenance and keeping links up-to-date, links should be presented in a single block at the
end of the page.

Where possible, use contextual text in your links to aid users with screen readers and other accessibility tools. For
example, “check out our documentation style guide” is preferable to “click here for more”.

2.7. Contribute to our docs 323

https://devguide.python.org/documentation/markup/

cloud-init, Release 24.1.3

Images

It is generally best to avoid screenshots where possible. If you need to refer to text output, you can use code blocks.
For diagrams, we recommend the use of Mermaid.

Code blocks

Our documentation uses the Sphinx extension “sphinx-copybutton”, which creates a small button on the right-hand
side of code blocks for users to copy the code snippets we provide.

The copied code will strip out the prompt symbol ($) so that users can paste commands directly into their terminal. For
user convenience, please ensure that code output is presented in a separate code block to the commands.

Vertical whitespace

One newline between each section helps ensure readability of the documentation source code.

Common words

There are some common words that should follow specific usage in text:

• cloud-init: Always hyphenated, and follows sentence case, so only capitalised at the start of a sentence.

• metadata, datasource: One word.

• user data, vendor data: Two words, not to be combined or hyphenated.

When referring to file names, which may be hyphenated, they should be decorated with backticks to ensure monospace
font is used to distinguish them from regular text.

Acronyms

Acronyms are always capitalised (e.g., JSON, YAML, QEMU, LXD) in text.

The first time an acronym is used on a page, it is best practice to introduce it by showing the expanded name followed
by the acronym in parentheses. E.g., Quick EMUlator (QEMU). If the acronym is very common, or you provide a link
to a documentation page that provides such details, you will not need to do this.

2.7.2 Documentation directory layout

Cloud-init’s documentation directory structure, with respect to the root directory:

/doc/
- examples/
- man/
- rtd/

- tutorial/
- howto/
- explanation/
- reference/

- development/
- static/

(continues on next page)

324 Chapter 2. Project and community

https://mermaid.js.org/

cloud-init, Release 24.1.3

(continued from previous page)

- css/
- js/
- *logos*

- *conf.py*
- *index.rst*
- *links.txt*

- rtd_html/
- sources/

examples/

man/

This subdirectory contains the Linux man pages for the binaries provided by cloud-init.

rtd/

This subdirectory is of most interest to anyone who wants to create or update either the content of the documentation,
or the styling of it.

• The content of the documentation is organised according to the Diataxis framework and can be found in the
subdirectories: tutorial/, howto/, explanation/, and reference/.

• The development/ subdirectory contains documentation for contributors.

• static/ contains content that relates to the styling of the documentation in the form of custom CSS or javascript
files found in css/ and js/ respectively. This is also where you can find the cloud-init logo.

• conf.py contains Sphinx configuration commands.

• index.rst is the front page of the documentation.

• links.txt contains common (and reusable) links so that you do not need to define the same URLs on every
page and can use a more convenient shorthand when referencing often-used links.

rtd_html/

When the documentation is built locally using tox -e doc, the built pages can be found in this folder.

sources/

This subdirectory contains demos which can help the reader understand how parts of the product work.

The documentation for cloud-init is hosted in the cloud-init GitHub repository and rendered on Read the Docs. It is
mostly written in reStructuredText.

The process for contributing to the docs is largely the same as for code, except that for cosmetic changes to the docu-
mentation (spelling, grammar, etc) you can also use the GitHub web interface to submit changes as quick PRs.

2.7. Contribute to our docs 325

https://diataxis.fr/
https://github.com/canonical/cloud-init/tree/main/doc/rtd
https://readthedocs.com/

cloud-init, Release 24.1.3

2.7.3 Previewing the docs

The documentation for submitted/active PRs is automatically built by Read the Docs and served from the PR’s “con-
versation” tab as an automatic check.

However, while you are working on docs for a feature you are adding, you will most likely want to build the docs locally.
There is a Makefile target to build the documentation for you:

$ tox -e doc

This will do two things:

• Build the documentation using Sphinx.

• Run doc8 against the documentation source code.

Once built, the HTML files will be viewable in doc/rtd_html. Use your web browser to open index.html to view and
navigate the site.

2.7.4 How are the docs structured?

We use Diataxis to organise our documentation. There is more detail on the layout of the doc directory in the Docu-
mentation directory layout article.

We also have a Documentation style guide that will help you if you need to edit or write any content.

2.7.5 In your first PR

You will need to add your GitHub username (alphabetically) to the in-repository list that we use to track CLA signatures:
tools/.github-cla-signers.

Please include this in the same PR alongside your first contribution. Do not create a separate PR to add your name to
the CLA signatures.

If you need some help with your contribution, you can contact us on our IRC channel. If you have already submitted a
work-in-progress PR, you can also ask for guidance from our technical author by tagging s-makin as a reviewer.

2.8 The cloud-init summit

One of the major highlights in our calendar is the cloud-init summit! The summit is an annual gathering of cloud-init
contributors and community members held in Seattle, Washington.

At the summit, we enjoy meeting with our fellow contributors to cloud-init, demoing recent developments, collecting
feedback, and holding workshops to discuss outstanding issues, bugs, and possible fixes.

After an unfortunate hiatus of a couple of years due to “global travel difficulties”, we are pleased to announced that the
next summit will be held in August 2023! More details to follow. . .

326 Chapter 2. Project and community

https://diataxis.fr/
https://github.com/canonical/cloud-init/blob/main/tools/.github-cla-signers
https://kiwiirc.com/nextclient/irc.libera.chat/cloud-init
https://github.com/s-makin

cloud-init, Release 24.1.3

2.8.1 Previous summits

cloud-init: Summit in Seattle, Washington

Note: This article was written by Joshua Powers and originally published on 31 August 2017. It is shared here under
license with no changes.

2.8. The cloud-init summit 327

https://powersj.io/posts/cloud-init-summit17/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

cloud-init, Release 24.1.3

Last week the cloud-init development team from Canonical ran a two-day summit in Seattle, Washington. The purpose
of the summit was to meet with contributors to cloud-init from cloud providers and OS vendors to demo recent devel-

328 Chapter 2. Project and community

cloud-init, Release 24.1.3

opments in cloud-init, resolve outstanding issues, and collect feedback on development and test processes as well as
future features.

Attendees included developers from Amazon, Microsoft, Google, VMWare, and IBM cloud teams, as well as the
maintainers of cloud-init from Red Hat, SUSE, and of course, Ubuntu. Special thanks go to Google for hosting us and
to Microsoft for buying everyone dinner!

Demos

The cloud-init development team came with a number of prepared demos and talks that they gave as a part of the
summit:

• cloud-init analyze: Ryan demoed the recently added analyze feature to aid in doing boot time performance
analysis. This tool parses the cloud-init log into formatted and sorted events to assist in determining long running
steps during instance initialization.

• cloud-config Schema Validation: Chad demonstrated the early functionality to validate cloud-configs before
launching instances. He demoed two modules that exist today, how to write the validation, and what positive and
negative results look like.

• Integration Testing and CI: Josh demonstrated the integration test framework and shared plans on running
tests on actual clouds. Then showed the merge request CI process and encouraged this as a way for other OSes
to participate.

• Using lxd for Rapid Development and Testing: Scott demoed setting userdata when launching a lxd instance
and how this can be used in the development process. He also discussed lxd image remotes and types of images.

2.8. The cloud-init summit 329

cloud-init, Release 24.1.3

Breakout Sessions

In addition to the prepared demos, the summit had numerous sessions that were requested by the attendees as additional
topics for discussion:

• Netplan (v2 YAML) as primary format

• How to query metadata

• Version numbering

• Device hot-plug

• Python 3

• And more. . .

During the summit, we took time to have merge review and bug squashing time. During this time, attendees came with
outstanding bugs to discuss possible fixes as well as go through outstanding merge requests and get live reviews.

Conclusions

A big thanks to the community for attending! The summit was a great time to meet many long time users and contrib-
utors face-to-face as well as collect feedback for cloud-init development.

Notes of both days can be found on the cloud-init mailing list. There you will find additional details about what I have
described above and much more.

Finally, if you are interested in following or getting involved in cloud-init development check out #cloud-init on Freen-
ode or subscribe to the cloud-init mailing list.

330 Chapter 2. Project and community

https://lists.launchpad.net/cloud-init/msg00094.html
https://launchpad.net/~cloud-init

cloud-init, Release 24.1.3

cloud-init: Summit 2018

Note: This article was written by Joshua Powers and originally published on 27 August 2018. It is shared here under
license with no changes.

Last week the cloud-init development team from Canonical ran our second annual two-day summit. Attendees included
cloud developers from Amazon, Microsoft, Google, VMWare, and Oracle, as well as the maintainer of cloud-init from
Amazon Linux, SUSE, and Ubuntu.

The purpose of this two-day event is to meet with contributors, demo recent developments, present future plans, resolve
outstanding issues, and collect additional feedback on the past year.

Like last year, the even was held in Seattle, Washington. A special thanks goes to Microsoft for providing breakfast
and lunch while hosting us and to the Amazon Linux and AWS teams for buying everyone dinner!

2.8. The cloud-init summit 331

https://powersj.io/posts/cloud-init-summit18/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

cloud-init, Release 24.1.3

Talks, Demos, and Discussions

The cloud-init development team came with a number of prepared demos and talks that they gave as a part of the
summit:

• Recent Features and Retrospective: Ryan started the summit off with an overview of features landed in the
past year as we all metrics since the start of faster releases with date-based versioning.

• Community Checkpoint & Feedback: Scott hosted a session where he explored the various avenues contribu-
tors have and received input and ideas for even better collaboration.

• Roadmap: Ryan presented the roadmap for upcoming releases and requested feedback from those in attendance.

• Ending Python 2.6 Support: Scott announced the end of Python 2.6 support and there was a discussion on
ending Python 2.7 support as well. An announcement to the mailing list is coming soon.

• Instance-data.json support and cloud-init cli: Chad demoed a standard way of querying instance data keys to
enable scripting, templating, and access across all clouds.

• Multipass: Alberto from the Canonical Multipass team joined us to demo the Multipass project. Multipass is
the fastest way to get a virtual machine launched with the latest Ubuntu images.

• Integration Testing and CI: Josh gave an update on the new CI processes, auto-landing merge requests, and de-
moed the integration tests. He went through what it takes to add additional clouds and his wish-list for additional
testing.

332 Chapter 2. Project and community

https://github.com/canonical/multipass

cloud-init, Release 24.1.3

• Pre-Network Detection for Clouds: Chad ran a discussion on collecting pre-networking detection for clouds in
order to speed up instance initialization and decrease boot time.

Breakout Sessions

In addition to the prepared demos and discussions, the summit had numerous sessions that were requested by the
attendees as additional topics for discussion.

SUSE led at discussion around the sysconfig renderer and network rework, while the Amazon Linux team discussed
some of their patches. Both distros are working to minimize the number of patches required.

During the summit, we took time to have merge review and bug squashing time. During this time, attendees came with
outstanding bugs to discuss possible fixes as well as go through outstanding merge requests and get live reviews.

2.8. The cloud-init summit 333

cloud-init, Release 24.1.3

Conclusions

As always a huge thank you to the community for attending! The summit was a great time to see many contributors
face-to-face as well as collect feedback for cloud-init development.

Notes of both days can be found on the cloud-init mailing list. There you will find additional details about what I have
described above and much more.

Finally, if you are interested in following or getting involved in cloud-init development check out #cloud-init on Freen-
ode or subscribe to the cloud-init mailing list.

cloud-init: Summit 2019

Note: This article was written by Joshua Powers and originally published on 21 October 2019. It is shared here under
license with no changes.

Last month the cloud-init development team from Canonical ran our third annual two-day summit. Attendees included
cloud developers from Amazon, Cisco, Microsoft, Google, and Oracle, as well as the maintainers of cloud-init from
Amazon Linux, SUSE, Red Hat, and Ubuntu.

The purpose of this two-day event is to meet with contributors, demo recent developments, present future plans, resolve
outstanding issues, and collect additional feedback on the past year.

334 Chapter 2. Project and community

https://lists.launchpad.net/cloud-init/msg00169.html
https://launchpad.net/~cloud-init
https://powersj.io/posts/cloud-init-summit19/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

cloud-init, Release 24.1.3

Like last year, the even was held in Seattle, Washington. A special thanks goes to Amazon for providing breakfast and
lunch while hosting us!

Topics and Decisions

Here are summary of some of the topics discussed during the sprint:

• New Security Process: I proposed a process by which security issues would be reported to the project, how they
would be evaluated, fixed, and eventually disclosed. While this is not fully complete, the process has already
been used once to evaluate what turned out to be non-security issues.

• Boot Performance: Ryan started the second day off talking about the boot performance analysis that he is
conducted. He has proposed an initial branch with changes to help many clouds improve their time to SSH.
While this work will involve effort across platforms, kernels, distros, and cloud-init, we can already start to make
changes to cloud-init.

• GitHub Transition: We are moving the project to GitHub in an effort to continue to gather contributions and
improve our merge proposal process. We have some early testing and CI branches ready to go. We are waiting
on some open questions around the CLA and mirroring back to Launchpad to continue the move.

• Python Support: The last release of cloud-init in 2019 is the final version to support python 2.7. We will cut a
branch for future bug fixes. After that master will now support Python 3.4 going forward. A future discussion
around how to move the Python 3 version is needed. See the mailing list post for more details.

• Red Hat Support: Edwardo gave a presentation on Red Hat’s process around cloud-init. He showed the versions
they are on and what they do when a new release comes out.

Working Sessions

During the summit, we took time to have merge review and bug squashing time. During this time, attendees came with
outstanding bugs to discuss possible fixes as well as go through outstanding merge requests and get live reviews.

2.8. The cloud-init summit 335

https://lists.launchpad.net/cloud-init/msg00228.html
https://lists.launchpad.net/cloud-init/msg00227.html

cloud-init, Release 24.1.3

Thank you

As always a huge thank you to the community for attending! The summit was a great time to see many contributors
face-to-face as well as collect feedback for cloud-init development.

Notes of both days can be found on the cloud-init mailing list. There you will find additional details about what I have
described above and much more.

Finally, if you are interested in following or getting involved in cloud-init development check out #cloud-init on Freen-
ode or subscribe to the cloud-init mailing list.

cloud-init: Summit 2023

After a three-year hiatus the two-day cloud-init summit finally resumed in August, giving Canonical a chance to recon-
nect with the community in person, and to realign on the direction and goals of the project.

The event was generously hosted by Microsoft this year at their Redmond campus in Seattle, Washington, and we are
grateful to the Microsoft community members “on the ground” who coordinated with Canonical’s cloud-init develop-
ment team to help organise and run the event. Big thanks go as well to the Canonical community team for helping us
to set up the event site, as well as for their support and guidance with all the planning involved.

As in previous years, the summit was a great opportunity for cloud-init contributors to get together and discuss the
most recent developments in the project, provide demos of new features, resolve outstanding issues, and shape the

336 Chapter 2. Project and community

https://lists.launchpad.net/cloud-init/msg00226.html
https://launchpad.net/~cloud-init

cloud-init, Release 24.1.3

Fig. 1: Enjoying a jog through the beautiful forest around the Microsoft Redmond campus!

2.8. The cloud-init summit 337

cloud-init, Release 24.1.3

future development direction of the project. It was wonderful to see some “old” faces again after such a long time, as
well as getting to meet some of our newer contributors in person.

The first hybrid summit

This summit was organised as a hybrid event for the first time, and despite some initial uncertainties about how to
implement that, it worked very well. In-person attendees included developers and contributors from Microsoft, Google,
Amazon, Oracle, openSUSE and we had remote presentations provided by FreeBSD and AlpineLinux maintainers.

In addition to our in-person gathering, we also had lively participation from our remote attendees from around the
world. With this hybrid format allowing attendance from community members who might not otherwise have been
able to take part, this is a format that we’ll want to carry forward to next year to open the event to the widest possible
audience.

Special thanks go to Canonical for sponsoring the dinner! It was a great chance to build community interactions “after
hours”, with topics ranging far and wide. Overall, it was a perfect opportunity to dig into industry dynamics that
influence cloud-init engagement.

338 Chapter 2. Project and community

cloud-init, Release 24.1.3

Highlights of the discussions

Thanks to all our presenters; Mina Galic (FreeBSD) and Dermot Bradley (AlpineLinux), Chris Patterson (Microsoft)
James Falcon, Brett Holman, Catherine Redfield, Alberto Contreras, Sally Makin, John Chittum, Daniel Bungert and
Chad Smith. You really helped to make this event a success.

Presentation takeaways

• Integration-testing tour/demo: James showed how Canonical uses our integration tests and pycloudlib during
SRU verification, and demonstrated how we think other clouds should be involved in standard evaluation of
cloud-init releases before publication.

There was interest in leveraging this testing at openSUSE, Amazon Linux and possibly Microsoft’s Mariner; they
may be looking to extend our framework for their release testing. Our homework from this is improved developer
docs on extending integration tests for other distributions.

Azure are looking to invest in distribution-agnostic integration test frameworks and want to knowledge-share
with the cloud-init community on that.

• Security-policy for cloud-init CVE handling: Our community would like Canonical to provide more context
during the embargo period on CVEs about the mitigation steps required. This is especially the case in any
downstream packaging, to allow downstream package maintainers more time to prepare.

• Cloud platforms want/like strict schema validation and errors on invalid user-data/config. They also requested
more visibility into any warnings surfaced by cloud-init with simple tools so that they can avoid costly “log
spelunking”.

This aligns well with Brett’s ongoing roadmap work to raise warnings from the CLI and some of the strict JSON
schema validation on network-config and user data/vendor data.

• Good lessons from both AlpineLinux (Dermot Bradley), who investigated SSH alternatives like dropbearSSH
and tinySSH, and FreeBSD (Mina Galić), who reported on the development and publishing process and on
finding better ways for FreeBSD and Alpine to engage with clouds, so they can get sponsorship of open source
images with cloud-init hosted in AWS.

2.8. The cloud-init summit 339

cloud-init, Release 24.1.3

Round-table discussions

• Boot-speed: The discussion hosted by Catherine, Alberto and Chad confirmed that our ongoing boot speed work
is critical to clouds and cloud-customers, who continue to gauge boot speed based on wall time to SSH into the
instance.

This is a more critical measurement than the time to all services being up. In our discussion, we received feedback
that every millisecond counts. We also learned that there is hesitation about moving to precompiled languages
such as Go, due to the potential image size impacts, or Rust, due to the somewhat limited platform support.

Partners are also looking for cloud-init analyze to report on external systemd-related impacts (such
as NetworkManager-wait-online.service or systemd-network-wait-online.service delays) due to external
units/services that affect boot.

• Review of our Python support matrix for all downstreams, with the goal of Python 3.6 version deprecation.
Due to ongoing downstream support needs, we are looking to retain Python 3.6 support until March 2024.

• Shared test frameworks: Azure intends to invest in integration testing with the cloud-init community, to develop
distribution-agnostic best practices for verification of distribution releases, and boot-speed and image health
analysis. If there are ways we want to collaborate on generalised testing and verification of images, they may
provide some development toward this cause.

340 Chapter 2. Project and community

cloud-init, Release 24.1.3

Breakout sessions

• Private reviews of partner engagements with Oracle and AWS, and Fabio Martins, Kyler Horner, and James to
prioritise ongoing work and plan for the future development of IPv6-only datasource support - as well as other
features.

• Brett and openSUSE’s Robert Schweikert worked through downstream patch review with the intent of merging
many openSUSE patches upstream. Amazon Linux has a couple of downstream patches that they may want to
upstream as well.

Conclusions

This two-day event gave us a fantastic chance to take the pulse of the cloud-init project. It’s given us a healthy under-
standing of areas in which we can better serve the community and how we can continue to build momentum.

Meeting face-to-face to reflect our cloud-init plans with the community helped confirm interest in some of the usability
features we are developing, such as better error and warning visibility and improving boot speed in cloud-init. There is
plenty of enthusiasm for continued collaboration on improved testing and verification that all distributions and clouds
can leverage.

We also appreciated the opportunity to get valuable feedback on our documentation, our communication, and our secu-
rity processes. We’ve also discussed and gained input into better practices we can adopt through GitHub automation,
workflows that automate pull request digests, and upstream test matrix coverage for downstreams (beside Ubuntu). All
of these things will help us to maintain the momentum of the cloud-init project and ensure that we are best serving the
needs of our community.

Thank you!

This event could not have taken place without the hard work and preparation of all our presenters, organisers, and the
voices of our community members in attendance. So, thank you again to everyone who participated, and we very much
hope to see you again at the next cloud-init summit!

Notes of both days can be found on the cloud-init mailing list, and also are hosted in our GitHub repository. There you
will find additional details about each topic and related discussions.

Finally, if you are interested in following or getting involved in cloud-init development check out #cloud-init on Lib-
era.chat or subscribe to the cloud-init mailing list.

2.8. The cloud-init summit 341

https://lists.launchpad.net/cloud-init/msg00460.html
https://github.com/canonical/cloud-init/blob/main/doc/summit/2023_summit_shared_notes.md

cloud-init, Release 24.1.3

342 Chapter 2. Project and community

PYTHON MODULE INDEX

c
cloudinit.config.cc_ansible, 73
cloudinit.config.cc_apk_configure, 76
cloudinit.config.cc_apt_configure, 78
cloudinit.config.cc_apt_pipelining, 83
cloudinit.config.cc_bootcmd, 83
cloudinit.config.cc_byobu, 84
cloudinit.config.cc_ca_certs, 85
cloudinit.config.cc_chef, 86
cloudinit.config.cc_disable_ec2_metadata, 89
cloudinit.config.cc_disk_setup, 90
cloudinit.config.cc_fan, 92
cloudinit.config.cc_final_message, 93
cloudinit.config.cc_growpart, 94
cloudinit.config.cc_grub_dpkg, 95
cloudinit.config.cc_install_hotplug, 96
cloudinit.config.cc_keyboard, 97
cloudinit.config.cc_keys_to_console, 98
cloudinit.config.cc_landscape, 99
cloudinit.config.cc_locale, 101
cloudinit.config.cc_lxd, 102
cloudinit.config.cc_mcollective, 106
cloudinit.config.cc_mounts, 107
cloudinit.config.cc_ntp, 109
cloudinit.config.cc_package_update_upgrade_install,

111
cloudinit.config.cc_phone_home, 112
cloudinit.config.cc_power_state_change, 114
cloudinit.config.cc_puppet, 115
cloudinit.config.cc_resizefs, 118
cloudinit.config.cc_resolv_conf, 118
cloudinit.config.cc_rh_subscription, 120
cloudinit.config.cc_rsyslog, 121
cloudinit.config.cc_runcmd, 123
cloudinit.config.cc_salt_minion, 124
cloudinit.config.cc_scripts_per_boot, 126
cloudinit.config.cc_scripts_per_instance, 126
cloudinit.config.cc_scripts_per_once, 127
cloudinit.config.cc_scripts_user, 127
cloudinit.config.cc_scripts_vendor, 128
cloudinit.config.cc_seed_random, 129
cloudinit.config.cc_set_hostname, 130

cloudinit.config.cc_set_passwords, 131
cloudinit.config.cc_snap, 133
cloudinit.config.cc_spacewalk, 135
cloudinit.config.cc_ssh, 136
cloudinit.config.cc_ssh_authkey_fingerprints,

139
cloudinit.config.cc_ssh_import_id, 139
cloudinit.config.cc_timezone, 140
cloudinit.config.cc_ubuntu_drivers, 141
cloudinit.config.cc_ubuntu_pro, 141
cloudinit.config.cc_update_etc_hosts, 145
cloudinit.config.cc_update_hostname, 146
cloudinit.config.cc_users_groups, 148
cloudinit.config.cc_wireguard, 152
cloudinit.config.cc_write_files, 154
cloudinit.config.cc_yum_add_repo, 156
cloudinit.config.cc_zypper_add_repo, 158
cloudinit.features, 321

343

cloud-init, Release 24.1.3

344 Python Module Index

INDEX

A
ALLOW_EC2_MIRRORS_ON_NON_AWS_INSTANCE_TYPES

(in module cloudinit.features), 321
APT_DEB822_SOURCE_LIST_FILE (in module clou-

dinit.features), 321

C
cloudinit.config.cc_ansible

module, 73
cloudinit.config.cc_apk_configure

module, 76
cloudinit.config.cc_apt_configure

module, 78
cloudinit.config.cc_apt_pipelining

module, 83
cloudinit.config.cc_bootcmd

module, 83
cloudinit.config.cc_byobu

module, 84
cloudinit.config.cc_ca_certs

module, 85
cloudinit.config.cc_chef

module, 86
cloudinit.config.cc_disable_ec2_metadata

module, 89
cloudinit.config.cc_disk_setup

module, 90
cloudinit.config.cc_fan

module, 92
cloudinit.config.cc_final_message

module, 93
cloudinit.config.cc_growpart

module, 94
cloudinit.config.cc_grub_dpkg

module, 95
cloudinit.config.cc_install_hotplug

module, 96
cloudinit.config.cc_keyboard

module, 97
cloudinit.config.cc_keys_to_console

module, 98
cloudinit.config.cc_landscape

module, 99
cloudinit.config.cc_locale

module, 101
cloudinit.config.cc_lxd

module, 102
cloudinit.config.cc_mcollective

module, 106
cloudinit.config.cc_mounts

module, 107
cloudinit.config.cc_ntp

module, 109
cloudinit.config.cc_package_update_upgrade_install

module, 111
cloudinit.config.cc_phone_home

module, 112
cloudinit.config.cc_power_state_change

module, 114
cloudinit.config.cc_puppet

module, 115
cloudinit.config.cc_resizefs

module, 118
cloudinit.config.cc_resolv_conf

module, 118
cloudinit.config.cc_rh_subscription

module, 120
cloudinit.config.cc_rsyslog

module, 121
cloudinit.config.cc_runcmd

module, 123
cloudinit.config.cc_salt_minion

module, 124
cloudinit.config.cc_scripts_per_boot

module, 126
cloudinit.config.cc_scripts_per_instance

module, 126
cloudinit.config.cc_scripts_per_once

module, 127
cloudinit.config.cc_scripts_user

module, 127
cloudinit.config.cc_scripts_vendor

module, 128
cloudinit.config.cc_seed_random

345

cloud-init, Release 24.1.3

module, 129
cloudinit.config.cc_set_hostname

module, 130
cloudinit.config.cc_set_passwords

module, 131
cloudinit.config.cc_snap

module, 133
cloudinit.config.cc_spacewalk

module, 135
cloudinit.config.cc_ssh

module, 136
cloudinit.config.cc_ssh_authkey_fingerprints

module, 139
cloudinit.config.cc_ssh_import_id

module, 139
cloudinit.config.cc_timezone

module, 140
cloudinit.config.cc_ubuntu_drivers

module, 141
cloudinit.config.cc_ubuntu_pro

module, 141
cloudinit.config.cc_update_etc_hosts

module, 145
cloudinit.config.cc_update_hostname

module, 146
cloudinit.config.cc_users_groups

module, 148
cloudinit.config.cc_wireguard

module, 152
cloudinit.config.cc_write_files

module, 154
cloudinit.config.cc_yum_add_repo

module, 156
cloudinit.config.cc_zypper_add_repo

module, 158
cloudinit.features

module, 321

E
ERROR_ON_USER_DATA_FAILURE (in module clou-

dinit.features), 322
EXPIRE_APPLIES_TO_HASHED_USERS (in module clou-

dinit.features), 322

G
get_features() (in module cloudinit.features), 322

M
module

cloudinit.config.cc_ansible, 73
cloudinit.config.cc_apk_configure, 76
cloudinit.config.cc_apt_configure, 78
cloudinit.config.cc_apt_pipelining, 83
cloudinit.config.cc_bootcmd, 83

cloudinit.config.cc_byobu, 84
cloudinit.config.cc_ca_certs, 85
cloudinit.config.cc_chef, 86
cloudinit.config.cc_disable_ec2_metadata,

89
cloudinit.config.cc_disk_setup, 90
cloudinit.config.cc_fan, 92
cloudinit.config.cc_final_message, 93
cloudinit.config.cc_growpart, 94
cloudinit.config.cc_grub_dpkg, 95
cloudinit.config.cc_install_hotplug, 96
cloudinit.config.cc_keyboard, 97
cloudinit.config.cc_keys_to_console, 98
cloudinit.config.cc_landscape, 99
cloudinit.config.cc_locale, 101
cloudinit.config.cc_lxd, 102
cloudinit.config.cc_mcollective, 106
cloudinit.config.cc_mounts, 107
cloudinit.config.cc_ntp, 109
cloudinit.config.cc_package_update_upgrade_install,

111
cloudinit.config.cc_phone_home, 112
cloudinit.config.cc_power_state_change,

114
cloudinit.config.cc_puppet, 115
cloudinit.config.cc_resizefs, 118
cloudinit.config.cc_resolv_conf, 118
cloudinit.config.cc_rh_subscription, 120
cloudinit.config.cc_rsyslog, 121
cloudinit.config.cc_runcmd, 123
cloudinit.config.cc_salt_minion, 124
cloudinit.config.cc_scripts_per_boot, 126
cloudinit.config.cc_scripts_per_instance,

126
cloudinit.config.cc_scripts_per_once, 127
cloudinit.config.cc_scripts_user, 127
cloudinit.config.cc_scripts_vendor, 128
cloudinit.config.cc_seed_random, 129
cloudinit.config.cc_set_hostname, 130
cloudinit.config.cc_set_passwords, 131
cloudinit.config.cc_snap, 133
cloudinit.config.cc_spacewalk, 135
cloudinit.config.cc_ssh, 136
cloudinit.config.cc_ssh_authkey_fingerprints,

139
cloudinit.config.cc_ssh_import_id, 139
cloudinit.config.cc_timezone, 140
cloudinit.config.cc_ubuntu_drivers, 141
cloudinit.config.cc_ubuntu_pro, 141
cloudinit.config.cc_update_etc_hosts, 145
cloudinit.config.cc_update_hostname, 146
cloudinit.config.cc_users_groups, 148
cloudinit.config.cc_wireguard, 152
cloudinit.config.cc_write_files, 154

346 Index

cloud-init, Release 24.1.3

cloudinit.config.cc_yum_add_repo, 156
cloudinit.config.cc_zypper_add_repo, 158
cloudinit.features, 321

N
NETPLAN_CONFIG_ROOT_READ_ONLY (in module clou-

dinit.features), 322
NOCLOUD_SEED_URL_APPEND_FORWARD_SLASH (in mod-

ule cloudinit.features), 322

Index 347

	Having trouble? We would like to help!
	Project and community
	Tutorials
	Core tutorial
	Core tutorial with QEMU
	QEMU tutorial debugging
	Did cloud-init discover the IMDS webserver?
	Did the IMDS webserver serve the expected files?
	Were the configurations inside the file correct?

	Why QEMU?
	How to use this tutorial
	Install QEMU
	Create a temporary directory
	Download a cloud image
	Define our user data
	What is user data?
	Define our metadata
	Define our vendor data
	Start an ad hoc IMDS webserver
	What is an IMDS?
	How does cloud-init use the IMDS?

	Launch a virtual machine with our user data
	How is QEMU configured for cloud-init?

	Verify that cloud-init ran successfully
	Check cloud-init status
	Tear down
	What’s next?

	Quick-start tutorial
	Quick-start tutorial with LXD
	Why LXD?
	How to use this tutorial
	Install and initialise LXD
	Define our user data
	Launch a LXD container with our user data
	Verify that cloud-init ran successfully
	Verify our user data

	Tear down
	What’s next?

	WSL tutorial
	WSL Tutorial
	How to use this tutorial
	Prerequisites
	Install WSL
	Obtain the Ubuntu WSL image
	Option #1: The Microsoft Store
	Option #2: The Ubuntu image server

	Create our user data
	What is user data?
	Start the Ubuntu WSL instance
	Verify that cloud-init ran successfully
	Verify our user data

	What’s next?

	How-to guides
	How do I…?
	How to run cloud-init locally
	QEMU
	Create your configuration
	Create an ISO disk
	Download a cloud image
	Boot the image with the ISO attached

	LXD
	LXD configuration types

	Libvirt
	Create your configuration
	Download a cloud image
	Create an instance

	Multipass

	How to re-run cloud-init
	How to fully re-run cloud-init
	Remove the logs and cache, then reboot
	Run a single cloud-init module

	How to partially re-run cloud-init
	Manually run cloud-init stages
	Reboot the instance

	How to change a module’s run frequency
	Example

	How to validate user data cloud config
	Static user data validation
	Debugging

	How to debug cloud-init
	I can’t log in to my instance
	Cloud-init did not run
	Cloud-init ran, but didn’t do what I want it to
	Cloud-init never finished running
	External reasons
	Internal reasons
	To start debugging

	Reported status
	Cloud-init status
	Cloud-init’s extended status
	Cloud-init enablement status

	Reporting bugs
	Collect logs
	Report upstream bugs
	Distro-specific issues
	Ubuntu
	Debian
	Red Hat, CentOS and Fedora
	SUSE and openSUSE
	Arch Linux

	How to identify the datasource I’m using
	How to disable cloud-init
	Method 1: text file
	Method 2: kernel commandline
	Method 3: environment variable

	Test pre-release cloud-init
	Add the -proposed repository pocket
	Install the pre-release cloud-init package
	Test the package
	Remove the proposed repository
	Remove artefacts and reboot

	Explanation
	Introduction to cloud-init
	What is the benefit of cloud-init?
	What does cloud-init do?
	How does cloud-init work?
	During early boot
	During late boot

	What’s next?

	Configuration sources
	Base configuration
	Vendor and user data
	Network configuration
	Specifying configuration
	End users
	Distro providers
	Cloud providers

	Boot stages
	Detect
	Local
	Network
	Config
	Final
	First boot determination
	Manual cache cleaning
	Reverting manual_cache_clean setting

	User data formats
	Cloud config data
	User data script
	Example script

	Kernel command line
	Gzip compressed content
	MIME multi-part archive
	Helper subcommand to generate MIME messages
	Examples

	include file
	cloud-boothook
	Part-handler
	Example

	Disabling user data

	Events and updates
	Events
	Datasource event support
	Configuring event updates
	Updates

	Hotplug
	Example
	Apply network config every boot

	Instance metadata
	Kernel command line
	Datasource discovery override
	Kernel cloud-config-url configuration

	What is instance-data?
	Discovery
	Using instance-data
	Example: Cloud config with instance-data
	Example: User data script with instance-data
	Example: CLI discovery of instance-data

	Reference
	Storage locations
	instance-data.json top level keys
	base64_encoded_keys
	features
	sensitive_keys
	merged_cfg
	merged_system_cfg
	ds
	sys_info
	system_info
	v1

	Standardised instance-data.json v1 keys
	v1._beta_keys
	v1.cloud_name
	v1.distro, v1.distro_version, v1.distro_release
	v1.instance_id
	v1.kernel_release
	v1.local_hostname
	v1.machine
	v1.platform
	v1.subplatform
	v1.public_ssh_keys
	v1.python_version
	v1.region
	v1.availability_zone

	Example Output

	Vendor data
	Overview
	Input formats
	Examples

	Security
	Security policy
	Reporting
	cloud-init-security
	Evaluation
	Disclosure

	Performance
	Usage
	Availability
	Subcommands
	Blame
	Show
	Dump
	Boot
	Timestamp gathering

	Failure states
	Critical failure
	Recoverable failure
	Cloud-init error codes
	Where to next?

	Exported errors
	Aggregated errors
	Per-stage errors
	Limitations of exported errors
	Where to next?

	Why did cloud-init status start returning exit code 2?
	Background
	Pain points
	Efforts to improve cloud-init
	JSON schema
	Text editor integration
	Cloud-init schema subcommand

	Return codes

	Reference
	Module reference
	Deprecation schedule and versions
	Ansible
	APK Configure
	Apt Configure
	Apt Pipelining
	Bootcmd
	Byobu
	CA Certificates
	Chef
	Disable EC2 Metadata
	Disk Setup
	Fan
	Final Message
	Growpart
	Grub Dpkg
	Install Hotplug
	Keyboard
	Keys to Console
	Landscape
	Locale
	LXD
	Mcollective
	Mounts
	NTP
	Package Update Upgrade Install
	Phone Home
	Power State Change
	Puppet
	Resizefs
	Resolv Conf
	Red Hat Subscription
	Rsyslog
	Runcmd
	Salt Minion
	Scripts Per Boot
	Scripts Per Instance
	Scripts Per Once
	Scripts User
	Scripts Vendor
	Seed Random
	Set Hostname
	Set Passwords
	Snap
	Spacewalk
	SSH
	SSH AuthKey Fingerprints
	SSH Import ID
	Timezone
	Ubuntu Drivers
	Ubuntu Pro
	Update Etc Hosts
	Update Hostname
	Users and Groups
	Wireguard
	Write Files
	Yum Add Repo
	Zypper Add Repo

	Cloud config examples
	Including users and groups
	Writing out arbitrary files
	Adding a yum repository
	Configure an instance’s trusted CA certificates
	Install and run chef recipes
	Install and run ansible-pull
	Configure instance to be managed by Ansible
	Configure instance to be an Ansible controller
	Add primary apt repositories
	Run commands on first boot
	Install arbitrary packages
	Update apt database on first boot
	Run apt or yum upgrade
	Adjust mount points mounted
	Configure instance's SSH keys
	Additional apt configuration and repositories
	Disk setup
	Configure data sources
	Create partitions and filesystems

	CLI commands
	analyze
	clean
	collect-logs
	devel
	net-convert
	render
	hotplug-hook
	query
	handle
	enable

	features
	init
	modules
	query
	schema
	single
	status

	Availability
	Distributions
	Clouds

	FAQ
	How do I get help?
	autoinstall, preruncmd, postruncmd
	Can I use cloud-init as a library?
	Where can I learn more?

	Merging user data sections
	Built-in mergers
	Dict
	List
	String
	Common options

	Customisation
	How to activate
	String format
	Dictionary format

	Specifying multiple types, and what this does
	Other uses
	Example cloud-config

	Datasources
	How to configure which datasource to use
	Datasources:
	Akamai
	Configuration
	Configuration Overrides

	Alibaba Cloud (AliYun)
	Metadata service
	Configuration
	Versions
	Metadata
	Userdata

	AltCloud
	RHEVm
	vSphere
	Create the ISO
	Verify the ISO

	Amazon EC2
	Configuration settings
	metadata_urls
	max_wait
	timeout
	apply_full_imds_network_config
	Notes

	Azure
	IMDS
	Configuration
	User data
	HostName

	CloudSigma
	Setting a hostname
	Providing user data

	CloudStack
	Configuration
	Example

	Config drive
	Version 2
	Keys and values
	ds-mode
	instance-id
	public-keys
	user-data

	DigitalOcean
	Configuration

	E24Cloud
	Exoscale
	Crawling of metadata
	Configuration
	Example

	Fallback/no datasource
	Google Compute Engine
	Configuration
	Example

	LXD
	Configuration
	Hotplug
	Example

	MAAS
	NoCloud
	Configuration Methods:
	Method 1: Labeled filesystem
	Method 2: Custom webserver
	Method 3: FTP Server
	Method 4: Local filesystem, kernel commandline or SMBIOS
	Permitted keys
	HTTP and HTTPS
	FTP and FTP over TLS
	Path Resource
	DMI-specific kernel commandline
	Example: Creating a disk
	Example meta-data
	Example config

	None
	Configuration
	userdata_raw
	metadata
	Example configuration

	NWCS
	Configuration

	OpenNebula
	Datasource configuration
	Contextualisation disk
	Contextualisation variables
	Example configuration
	Example VM’s context section

	OpenStack
	Discovery
	Configuration
	metadata_urls
	max_wait
	timeout
	retries
	apply_network_config
	Example configuration
	Vendor Data
	OpenStack Ironic Bare Metal
	Method 1: Configuration file
	Method 2: Kernel command line

	Oracle
	Oracle platform
	Configuration
	configure_secondary_nics
	max_wait
	timeout
	Example configuration

	OVF
	Graceful rpctool fallback
	Additional information

	Rbx Cloud
	Metadata drive

	Scaleway
	Configuration
	User Data

	SmartOS Datasource
	SmartOS platform
	Metadata channels
	Disabling user-script
	Base64
	disk_aliases and ephemeral disk

	UpCloud
	Providing user data

	VMware
	Guest OS customization
	System configuration
	Datasource configuration
	Configuration examples
	VMware Tools configuration
	GuestInfo keys
	Features
	Graceful rpctool fallback
	Instance data and lazy networks
	Redacting sensitive information (GuestInfo keys transport only)
	Reading the local IP addresses
	Waiting on the network
	Walkthrough of GuestInfo keys transport
	Examples of common configurations
	Setting the hostname
	Setting the instance ID
	Providing public SSH keys
	Configuring the network

	Vultr
	Configuration

	WSL
	Requirements
	User data configuration
	Vendor and metadata
	Unsupported or restricted modules and features

	ZStack
	Discovery
	Metadata
	User data

	Supported distros
	Network configuration
	Default behaviour
	Disabling network configuration
	Kernel command line
	Cloud config

	Disabling network activation
	Fallback network configuration
	Network configuration sources
	Network configuration ENI (legacy)
	Networking config Version 1
	Configuration types
	Physical
	name: <desired device name>
	mac_address: <MAC Address>
	mtu: <MTU SizeBytes>
	accept-ra: <boolean>
	Physical example
	Bond
	name: <desired device name>
	mac_address: <MAC Address>
	bond_interfaces: <List of network device names>
	mtu: <MTU SizeBytes>
	params: <Dictionary of key: value bonding parameter pairs>
	Bond example
	Bridge
	Bridge example
	VLAN
	mtu: <MTU SizeBytes>
	VLAN example
	Nameserver
	Nameserver example
	Route
	Route example
	Subnet/IP
	Subnet DHCP example
	Subnet static example
	Multiple subnet example
	Subnet with routes example
	Multi-layered configurations
	Bonded VLAN example
	Multiple VLAN example

	Networking config Version 2
	Netplan passthrough
	Version 2 configuration format
	Device configuration IDs
	Physical devices (e.g., ethernet, wifi)
	Virtual devices (e.g., veth, bridge, bond)
	Common properties for physical device types
	match: <(mapping)>
	name: <(scalar)>
	macaddress: <(scalar)>
	driver: <(scalar)>
	set-name: <(scalar)>
	wakeonlan: <(bool)>
	Common properties for all device types
	renderer: <(scalar)>
	dhcp4: <(bool)>
	dhcp6: <(bool)>
	dhcp4-overrides and dhcp6-overrides: <(mapping)>
	addresses: <(sequence of scalars)>
	gateway4: or gateway6: <(scalar)>
	mtu: <MTU SizeBytes>
	nameservers: <(mapping)>
	routes: <(sequence of mapping)>
	Ethernets
	Bonds
	interfaces: <(sequence of scalars)>
	parameters: <(mapping)>
	mode: <(scalar)>
	lacp-rate: <(scalar)>
	mii-monitor-interval: <(scalar)>
	min-links: <(scalar)>
	transmit-hash-policy: <(scalar)>
	ad-select: <(scalar)>
	all-slaves-active: <(bool)>
	arp-interval: <(scalar)>
	arp-ip-targets: <(sequence of scalars)>
	arp-validate: <(scalar)>
	arp-all-targets: <(scalar)>
	up-delay: <(scalar)>
	down-delay: <(scalar)>
	fail-over-mac-policy: <(scalar)>
	gratuitous-arp: <(scalar)>
	packets-per-slave: <(scalar)>
	primary-reselect-policy: <(scalar)>
	learn-packet-interval: <(scalar)>
	Bridges
	interfaces: <(sequence of scalars)>
	parameters: <(mapping)>
	ageing-time: <(scalar)>
	priority: <(scalar)>
	forward-delay: <(scalar)>
	hello-time: <(scalar)>
	max-age: <(scalar)>
	path-cost: <(scalar)>
	stp: <(bool)>
	VLANs
	id: <(scalar)>
	link: <(scalar)>
	Examples

	Network configuration outputs
	NetworkManager
	ENI
	Netplan
	Sysconfig
	NetBSD, OpenBSD, FreeBSD

	Network output policy
	Network configuration tools

	Base configuration
	Generation
	Base configuration keys
	Module keys
	Examples
	Datasource keys
	System info keys
	Logging keys
	logcfg
	log_cfgs
	log_basic
	output
	syslog_fix_perms
	def_log_file

	Other keys
	network
	datasource_pkg_list
	datasource_list
	vendor_data/vendor_data2
	manual_cache_clean

	Example

	Datasource dsname
	Performance analysis
	cloud-init analyze
	analyze show
	analyze dump
	analyze blame
	analyze boot

	Stable Release Updates (SRU)
	SRU package version
	SRU testing for cloud-init
	Test process:

	Breaking changes
	23.2-24.1 - Datasource identification
	24.1 - removed Ubuntu’s ordering dependency on snapd.seeded
	23.4 - added status code for recoverable error
	23.2 - kernel commandline

	Log and configuration files
	Cloud-init log files
	Runtime logs
	Early boot logs

	Configuration files

	How to contribute to cloud-init
	Prerequisites
	Getting help
	Getting started
	Find issues to work on
	Claiming an issue
	Creating an issue
	No-code or low-code options

	Submit your first pull request
	Setup Git and GitHub appropriately
	Sign the CLA
	Add your name to the CLA signers list
	Create a sandbox environment
	Format the code
	Run unit tests
	Read our code review process

	Code review process
	Goals
	Asking for help
	Role definitions
	PR acceptance conditions
	Non-committer reviews
	Opening phase
	Proposer opens a PR
	CI runs automatically

	Review phase
	A committer is assigned
	Committer’s initial review
	Approve
	Approve (with nits)
	Outright rejection
	Needs Changes

	Inactive pull requests

	Contribute
	Pull request checklist
	Debugging and reporting
	Logging
	Python logging
	Command output
	Event reporting
	Configuration
	webhook
	log
	print
	Example
	rsyslog module

	Internal Files: data
	Data files
	instance
	data

	Contribute to the code
	Testing
	Testing
	Guidelines
	Test layout
	pytest tests
	pytest version “gotchas”
	Mocking and assertions
	Test argument ordering

	Integration testing
	Overview
	Test definition
	Test execution
	Configuration
	Cloud interaction
	Image selection
	Image setup
	Test setup
	Continuous integration
	Fixtures
	client
	session_cloud
	setup_image
	Examples

	Popular contributions
	Module creation
	Example
	Guidelines
	Module execution

	Supporting your cloud or platform
	Ways to add platform support
	Platform requirements
	Technical requirements
	A mechanism for self-identification
	A mechanism for cloud-init to retrieve configuration
	Logistical requirements
	Testing access
	Maintainer support

	Adding cloud-init support
	Add datasource module cloudinit/sources/DataSource<CloudPlatform>.py
	Re-run datasource detection
	Add tests for datasource module
	Update ds-identify
	Add tests for ds-identify
	Add your datasource name to the built-in list of datasources
	Add your cloud platform to apport collection prompts
	Enable datasource by default in Ubuntu packaging branches
	Add documentation for your datasource

	Benefits of including your datasource in upstream cloud-init

	Code style and design
	Python support
	Type annotations

	Other resources
	Directory layout
	/var/lib/cloud
	.../data/
	.../handlers/
	.../instance
	.../instances/
	.../scripts/
	.../seed/
	.../sem/

	Feature flags

	Contribute to our docs
	Documentation style guide
	Language
	Headings
	Line length
	Anchor labels
	Links
	Images
	Code blocks
	Vertical whitespace
	Common words
	Acronyms

	Documentation directory layout
	examples/
	man/
	rtd/
	rtd_html/
	sources/

	Previewing the docs
	How are the docs structured?
	In your first PR

	The cloud-init summit
	Previous summits
	cloud-init: Summit in Seattle, Washington
	Demos
	Breakout Sessions
	Conclusions

	cloud-init: Summit 2018
	Talks, Demos, and Discussions
	Breakout Sessions
	Conclusions

	cloud-init: Summit 2019
	Topics and Decisions
	Working Sessions
	Thank you

	cloud-init: Summit 2023
	The first hybrid summit
	Highlights of the discussions
	Presentation takeaways
	Round-table discussions
	Breakout sessions

	Conclusions
	Thank you!

	Python Module Index
	Index

